login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that 1^(n+1) + 2^(n+1) + ... + n^(n+1) == 0 (mod n).
4

%I #13 Nov 20 2013 09:21:36

%S 1,4,5,7,8,11,12,13,16,17,19,20,23,24,25,28,29,31,32,36,37,40,41,43,

%T 44,47,48,49,52,53,56,59,60,61,64,65,67,68,71,72,73,76,79,80,83,84,85,

%U 88,89,91,92,96,97,100,101,103,104,107,108,109,112,113,116

%N Numbers n such that 1^(n+1) + 2^(n+1) + ... + n^(n+1) == 0 (mod n).

%H Charles R Greathouse IV, <a href="/A228919/b228919.txt">Table of n, a(n) for n = 1..10000</a>

%t f[n_] := Mod[Sum[PowerMod[i, n + 1, n], {i, 1, n}], n]; Select[Range[1000], f[#] == 0 &]

%o (PARI) is(n)=my(m=n+1);sum(k=1,n,Mod(k,n)^m)==0 \\ _Charles R Greathouse IV_, Nov 20 2013

%Y Cf. A191677, A121706.

%K nonn

%O 1,2

%A _José María Grau Ribas_, Sep 08 2013