login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228902
Triangle defined by g.f. A(x,y) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, k^2) * y^k ), as read by rows.
6
1, 1, 1, 1, 3, 1, 1, 6, 45, 1, 1, 10, 505, 2905, 1, 1, 15, 3045, 412044, 411500, 1, 1, 21, 12880, 16106168, 1218805926, 100545716, 1, 1, 28, 43176, 309616264, 479536629727, 9030648908720, 37614371968, 1, 1, 36, 122640, 3752248896, 61545730104024, 50139332516318674, 139855355007409180, 19977489354808, 1
OFFSET
0,5
EXAMPLE
This triangle begins:
1;
1, 1;
1, 3, 1;
1, 6, 45, 1;
1, 10, 505, 2905, 1;
1, 15, 3045, 412044, 411500, 1;
1, 21, 12880, 16106168, 1218805926, 100545716, 1;
1, 28, 43176, 309616264, 479536629727, 9030648908720, 37614371968, 1;
1, 36, 122640, 3752248896, 61545730104024, 50139332516318674, 139855355007409180, 19977489354808, 1;
...
G.f.: A(x,y) = 1 + (1+y)*x + (1+3*y+y^2)*x^2 + (1+6*y+45*y^2+y^3)*x^3 + (1+10*y+505*y^2+2905*y^3+y^4)*x^4 + (1+15*y+3045*y^2+412044*y^3+411500*y^4+y^5)*x^5 +...
The logarithm of the g.f. equals the series:
log(A(x,y)) = (1 + y)*x
+ (1 + 4*y + y^2)*x^2/2
+ (1 + 9*y + 126*y^2 + y^3)*x^3/3
+ (1 + 16*y + 1820*y^2 + 11440*y^3 + y^4)*x^4/4
+ (1 + 25*y + 12650*y^2 + 2042975*y^3 + 2042975*y^4 + y^5)*x^5/5
+ (1 + 36*y + 58905*y^2 + 94143280*y^3 + 7307872110*y^4 + 600805296*y^5 + y^6)*x^/6 +...
in which the coefficients form A226234(n,k) = binomial(n^2, k^2).
PROG
(PARI) {T(n, k)=polcoeff(polcoeff(exp(sum(m=1, n, x^m/m*sum(j=0, m, binomial(m^2, j^2)*y^j))+x*O(x^n)), n, x), k, y)}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
Cf. A206848 (row sums), A206850 (antidiagonal sums), A228903 (diagonal).
Cf. related triangles: A226234 (log), A209196, A228900, A228904.
Sequence in context: A228899 A255918 A102479 * A053193 A348649 A010273
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Sep 07 2013
STATUS
approved