login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Column 1 of triangle A228900.
1

%I #3 Sep 07 2013 19:45:14

%S 1,3,15,155,2685,65517,2063205,79715229,3653521179,193876702019,

%T 11696128639195,790788563411431,59238930606369007,4870881096635599567,

%U 436176889680415116607,42256722956163045301807,4403938204071514872757477,491317594015782152377769725,58423874601431980415156917525

%N Column 1 of triangle A228900.

%C Triangle A228900 is defined by g.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, (n-k)*k) * y^k ).

%o (PARI) {a(n)=polcoeff(polcoeff(exp(sum(m=1, n, x^m/m*sum(j=0, m, binomial(m^2, (m-j)*j)*y^j))+x*O(x^n)), n, x), 1, y)}

%o for(n=1, 20, print1(a(n), ", "))

%Y Cf. A228900.

%K nonn

%O 1,2

%A _Paul D. Hanna_, Sep 07 2013