Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Mar 12 2021 22:24:47
%S 1,1,2,3,6,11,16,24,38,57,82,117,168,238,328,448,614,834,1114,1480,
%T 1966,2592,3384,4398,5704,7361,9436,12045,15344,19470,24576,30922,
%U 38822,48576,60548,75259,93342,115454,142360,175104,214958,263262,321584,391993,476952
%N Expansion of 1 + q * (psi(-q^5) / psi(-q))^2 in powers of q where psi() is a Ramanujan theta function.
%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%H G. C. Greubel, <a href="/A228864/b228864.txt">Table of n, a(n) for n = 0..1000</a>
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F Expansion of (phi(q^5) / phi(q))^2 * (chi^5(q) / chi(q^5)) in powers of q where phi(), chi() are Ramanujan theta functions.
%F Expansion of eta(q^10)^8 / (eta(q) * eta(q^4) * eta(q^5)^3 * eta(q^20)^3) in powers of q.
%F Euler transform of period 20 sequence [ 1, 1, 1, 2, 4, 1, 1, 2, 1, -4, 1, 2, 1, 1, 4, 2, 1, 1, 1, 0, ...].
%F G.f. is a period 1 Fourier series which satisfies f(-1 / (20 t)) = (1/5) g(t) where q = exp(2 Pi i t) and g() is the g.f. of A225849.
%F a(n) = A210458(n) unless n=0. a(n) = (-1)^n * A138520(n).
%F a(n) ~ exp(2*Pi*sqrt(n/5)) / (2 * 5^(5/4) * n^(3/4)). - _Vaclav Kotesovec_, Nov 15 2017
%e G.f. = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 11*x^5 + 16*x^6 + 24*x^7 + 38*x^8 + ...
%t a[ n_] := SeriesCoefficient[ 1 + (EllipticTheta[ 2, Pi/4, q^(5/2)] / EllipticTheta[ 2, Pi/4, q^(1/2)])^2, {q, 0, n}]; (* _Michael Somos_, Oct 26 2015 *)
%t a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q^5] / EllipticTheta[ 3, 0, q])^2 QPochhammer[ q^5, -q^5] / QPochhammer[ q, -q]^5, {q, 0, n}]; (* _Michael Somos_, Oct 26 2015 *)
%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^10 + A)^8 / (eta(x + A) * eta(x^4 + A) * eta(x^5 + A)^3 * eta(x^20 + A)^3), n))};
%Y Cf. A138520, A210458, A225849.
%K nonn
%O 0,3
%A _Michael Somos_, Sep 05 2013