login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle defined by T(n,k) = binomial(n^2, (n-k)*k), for n>=0, k=0..n, as read by rows.
7

%I #11 Sep 08 2013 17:32:40

%S 1,1,1,1,4,1,1,36,36,1,1,560,1820,560,1,1,12650,177100,177100,12650,1,

%T 1,376992,30260340,94143280,30260340,376992,1,1,13983816,8217822536,

%U 92263734836,92263734836,8217822536,13983816,1,1,621216192,3284214703056,159518999862720,488526937079580

%N Triangle defined by T(n,k) = binomial(n^2, (n-k)*k), for n>=0, k=0..n, as read by rows.

%H Paul D. Hanna, <a href="/A228836/b228836.txt">Rows 0..30 as a flattened table of n, a(n) for n = 0..495</a>

%e The triangle of coefficients C(n^2, (n-k)*k), n>=k, k=0..n, begins:

%e 1;

%e 1, 1;

%e 1, 4, 1;

%e 1, 36, 36, 1;

%e 1, 560, 1820, 560, 1;

%e 1, 12650, 177100, 177100, 12650, 1;

%e 1, 376992, 30260340, 94143280, 30260340, 376992, 1;

%e 1, 13983816, 8217822536, 92263734836, 92263734836, 8217822536, 13983816, 1;

%e 1, 621216192, 3284214703056, 159518999862720, 488526937079580, 159518999862720, 3284214703056, 621216192, 1; ...

%o (PARI) {T(n,k)=binomial(n^2, (n-k)*k)}

%o for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))

%Y Cf. A207136 (row sums), A228837 (antidiagonal sums), A070780 (column 1).

%Y Cf. related triangles: A228900(exp), A209330, A226234, A228832.

%K nonn,tabl

%O 0,5

%A _Paul D. Hanna_, Sep 05 2013