Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Oct 12 2015 22:31:33
%S 0,1,1,1,2,1,2,5,5,2,3,10,14,10,3,5,20,36,36,20,5,8,38,83,106,83,38,8,
%T 13,71,182,281,281,182,71,13,21,130,382,690,834,690,382,130,21,34,235,
%U 778,1606,2268,2268,1606,778,235,34,55,420,1546,3586,5780,6750
%N Symmetric triangle, read by rows, related to Fibonacci numbers.
%C Triangles satisfying the same recurrence: A091533, A091562, A185081, A205575, A209137, A209138.
%F G.f.: x*(1+y)/(1-x-x*y-x^2-x^2*y-x^2*y^2).
%F T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k) + T(n-2,k-1) + T(n-2,k-2), T(0,0) = 0, T(1,0) = T(1,1) = 1, T(n,k) = 0 if k<0 or if k>n.
%F Sum_{k = 0..n} T(n,k)*x^k = A000045(n), 2*A015518(n), 3*A015524(n), 4*A200069(n) for x = 0, 1, 2, 3 respectively.
%F Sum_{k = 0..floor(n/2)} T(n-k,k) = A008998(n+1).
%e Triangle begins :
%e 0
%e 1, 1
%e 1, 2, 1
%e 2, 5, 5, 2
%e 3, 10, 14, 10, 3
%e 5, 20, 36, 36, 20, 5
%e 8, 38, 83, 106, 83, 38, 8
%e 13, 71, 182, 281, 281, 182, 71, 13
%e 21, 130, 382, 690, 834, 690, 382, 130, 21
%e 34, 235, 778, 1606, 2268, 2268, 1606, 778, 235, 34
%e 55, 420, 1546, 3586, 5780, 6750, 5780, 3586, 1546, 420, 55
%Y Cf. A000045 (1st column), A001629 (2nd column), A008998, A152011, A261055 (3rd column).
%K nonn,easy,tabl
%O 0,5
%A _Philippe Deléham_, Oct 30 2013