login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of arrays of the median of three adjacent elements of some length -(n+2) 0..3 array.
1

%I #13 Sep 02 2013 13:02:51

%S 4,16,64,232,696,2072,6130,18378,55716,169734,517764,1578184,4806344,

%T 14629384,44519552,135480532,412314438,1254882280,3819338704,

%U 11624541548,35380360780,107682931160,327740673246,997501106370,3035962621026

%N Number of arrays of the median of three adjacent elements of some length -(n+2) 0..3 array.

%H R. H. Hardin, <a href="/A228735/b228735.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 4*a(n-1) -2*a(n-2) -6*a(n-3) +6*a(n-4) +15*a(n-5) -11*a(n-6) +a(n-7) +a(n-8) +3*a(n-9) +24*a(n-10) -3*a(n-11) -35*a(n-12) -28*a(n-13) +22*a(n-14) +18*a(n-15) -9*a(n-16) -11*a(n-17) -4*a(n-18) +15*a(n-19) +15*a(n-20) -2*a(n-21) -4*a(n-22) -4*a(n-23) -3*a(n-24) +a(n-25) +a(n-26)

%e Some solutions for n=4

%e ..2..2..3..3..1..1..2..1..2..3..0..3..0..2..0..1

%e ..0..3..2..1..1..0..2..1..3..2..0..2..1..0..1..0

%e ..2..3..1..2..0..1..0..2..3..0..1..0..3..2..0..2

%e ..1..3..1..1..2..1..0..0..1..2..0..0..3..3..3..1

%Y Column 3 of A228740.

%K nonn

%O 1,1

%A _R. H. Hardin_ Sep 01 2013