login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Array: row n consists of n-th nonsquare f(n) followed by L(CF(sqrt(f(n)))) followed by L(ACF(sqrt(f(n)))), where L indicates the length of the repeating string; CF indicates continued fraction, and ACF indicates accelerated continued fraction.
2

%I #6 Dec 04 2016 19:46:32

%S 2,1,1,3,2,2,5,1,1,6,2,2,7,2,4,8,2,2,10,1,1,11,2,2,12,2,2,13,3,5,14,2,

%T 4,15,2,2,17,1,1,18,2,2,19,4,6,20,2,2,21,4,6,22,4,6,23,2,4,24,2,2,26,

%U 1,1,27,2,2,28,4,4,29,8,5,30,2,2,31,6,8,32

%N Array: row n consists of n-th nonsquare f(n) followed by L(CF(sqrt(f(n)))) followed by L(ACF(sqrt(f(n)))), where L indicates the length of the repeating string; CF indicates continued fraction, and ACF indicates accelerated continued fraction.

%C See A228667 for the definition of accelerated continued fraction.

%e The initial 2,1,1 means that both the ACF and CF of sqrt(2) have repeating strings of length 1; the next 3,2,2 means that the ACF and CF of sqrt(3) have repeating strings of length 2 and 2. In the table below, Mathematica notation is used for repeating continued fractions; x(n) approximates sqrt(n)-ACF(sqrt(n)) and y(n) approximates sqrt(n)-CF(sqrt(n)).

%e n . ACF(sqrt(n)) . x(n) ........... CF(sqrt(n)) ... y(n)

%e 2 . {1,{2}} ..... -0.32 ........... {1,{2}} ....... -0.32

%e 3 . {2,{-4,4}} .. -1.3 x 10^(-11) . {1,{1,2}} ..... -7 x 10^(-6)

%e 7 . {3,{-3,6}} .. -5.0 x 10^(-12) . {2,{1,1,1,4}} . -5 x 10^(-6)

%t $MaxExtraPrecision = Infinity; period[seq_] := (If[Last[#1] == {} || Length[#1] == Length[seq] - 1, 0, Length[#1]] &)[NestWhileList[Rest, Rest[seq], #1 != Take[seq, Length[#1]] &, 1]]; periodicityReport[seq_] := ({Take[seq, Length[seq] - Length[#1]], period[#1], Take[#1, period[#1]]} &)[Take[seq, -Length[NestWhile[Rest[#1] &, seq, period[#1] == 0 &, 1, Length[seq]]]]]

%t (*output format {initial seqment,period length,period}*)

%t (*error messages occur if the sequence not found to be periodic.*)

%t aCF[rational_] := Module[{steps = {}, stop = False, i = 0, x = Numerator[rational], y = Denominator[rational], w, u, v, f, c},(*Step 1*)w = Mod[x, y]; Which[w == 0, c[i] = x/y; stop = True; AppendTo[steps, "A"], 0 < w <= y/2, c[i] = Floor[x/y]; {u, v, f} = {y, w, 1}; AppendTo[steps, "B"], w > y/2, c[i] = 1 + Floor[x/y]; {u, v, f} = {y, y - w, -1}; AppendTo[steps, "C"]]; i++; (*Step 2*)While[stop =!= True, w = Mod[u, v]; Which[f == 1 && w == 0, c[i] = u/v; stop = True; AppendTo[steps, "0.1"], f == -1 && w == 0, c[i] = -u/v; stop = True; AppendTo[steps, "0.2"], f == 1 && w <= v/2, c[i] = Floor[u/v]; {u, v, f} = {v, w, 1}; AppendTo[steps, "1"], f == 1 && w > v/2, c[i] = 1 + Floor[u/v]; {u, v, f} = {v, v - w, -1}; AppendTo[steps, "2"], f == -1 && w <= v/2, c[i] = -Floor[u/v]; {u, v, f} = {v, w, -1}; AppendTo[steps, "3"], f == -1 && w > v/2, c[i] = -1 - Floor[u/v]; {u, v, f} = {v, v - w, -f}; AppendTo[steps, "4"]]; i++]; (*Display results*) {FromContinuedFraction[#], {"Steps", steps}, {"ACF", #}, {"CF", ContinuedFraction[x/y]}} &[Map[c, Range[i] - 1]]]

%t m = Map[{#, Map[periodicityReport[#][[2]] &, {Drop[#[[1]][[2]], -3], Drop[#[[2]][[2]], -3]} &[aCF[Rationalize[Sqrt[#], 10^-80]][[{3, 4}]]]]} &, Select[Range[200], ! IntegerQ[Sqrt[#]] &]]

%t Flatten[m] (* _Peter J. C. Moses_, Aug 28 2013 *)

%Y Cf. A228668, A228488.

%K nonn,tabf,easy

%O 1,1

%A _Clark Kimberling_, Aug 29 2013