Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Mar 06 2020 13:45:12
%S 2,8,48,320,2176,14848,101376,692224,4726784,32276480,220397568,
%T 1504968704,10276569088,70172803072,479169871872,3271976550400,
%U 22342453428224,152563815022592,1041770892754944,7113656621858816,48575085832830976,331691433687777280
%N a(n) = 2^n*A056236(n).
%C Bhadouria et al. call this the 2-binomial transform of the 2-Lucas numbers.
%H Colin Barker, <a href="/A228568/b228568.txt">Table of n, a(n) for n = 0..1000</a>
%H P. Bhadouria, D. Jhala, B. Singh, <a href="http://dx.doi.org/10.22436/jmcs.08.01.07">Binomial Transforms of the k-Lucas Sequences and its Properties</a>, The Journal of Mathematics and Computer Science (JMCS), Volume 8, Issue 1, Pages 81-92; sequence T_2.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (8,-8).
%F G.f.: 2*( 1-4*x ) / ( 1-8*x+8*x^2 ).
%F a(n) = 2*A084130(n).
%F From _Colin Barker_, Mar 16 2016: (Start)
%F a(n) = ((4-2*sqrt(2))^n+(2*(2+sqrt(2)))^n).
%F a(n) = 8*a(n-1)-8*a(n-2) for n>1.
%F (End)
%o (PARI) Vec(2*(1-4*x)/(1-8*x+8*x^2) + O(x^50)) \\ _Colin Barker_, Mar 16 2016
%K nonn,easy
%O 0,1
%A _R. J. Mathar_, Nov 10 2013