login
A228548
Determinant of the n X n matrix with (i,j)-entry equal to A008683(i+j-1) for all i,j = 1..n.
5
1, -2, 3, 3, -7, -5, 12, -19, -52, -52, -20, 73, -919, 6209, 2206, -1869, -8835, -4021, 23202, -122489, -174347, 1106682, 1114088, 388318, -7528057, 55753005, 81020413, -530178192, -6348221604, 101952770365, -371734984964, -16091176203501, 90823940064758, 163339092651834, -3480231557696967
OFFSET
1,2
COMMENTS
Conjecture: a(n) is always nonzero. Moreover, |a(n)|^(1/n) tends to infinity.
We have verified that a(n) is nonzero for all n = 1..500.
LINKS
EXAMPLE
a(1) = 1 since Moebius(1+1-1) = 1.
MATHEMATICA
a[n_]:=a[n]=Det[Table[MoebiusMu[i+j-1], {i, 1, n}, {j, 1, n}]]
Table[a[n], {n, 1, 10}]
PROG
(PARI) a(n) = matdet(matrix(n, n, i, j, moebius(i+j-1))); \\ Michel Marcus, Apr 14 2023
CROSSREFS
KEYWORD
sign
AUTHOR
Zhi-Wei Sun, Aug 25 2013
STATUS
approved