login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

x-values in the solution to the Pell equation x^2 - 53*y^2 = -1.
2

%I #20 Feb 11 2024 04:44:03

%S 182,24114818,3195165155182,423352992707189818,

%T 56093424824522071350182,7432266601976172417049224818,

%U 984760460172545468089666118585182,130478791444509662828968408963250219818,17288178907829880845340110782723061506860182

%N x-values in the solution to the Pell equation x^2 - 53*y^2 = -1.

%C All terms are multiples of 182.

%H Vincenzo Librandi, <a href="/A228535/b228535.txt">Table of n, a(n) for n = 1..200</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (132498,-1).

%F a(n) = 132498*a(n-1)-a(n-2).

%F G.f.: 182*x*(x+1) / (x^2-132498*x+1).

%t CoefficientList[Series[182 (x + 1) / (x^2 - 132498 x + 1), {x, 0, 10}], x] (* _Vincenzo Librandi_, Aug 25 2013 *)

%t LinearRecurrence[{132498,-1},{182,24114818},20] (* _Harvey P. Dale_, Nov 07 2022 *)

%o (PARI) Vec(182*x*(x+1)/(x^2-132498*x+1) + O(x^50))

%Y Cf. A228536 gives the corresponding y-values.

%K nonn,easy

%O 1,1

%A _Colin Barker_, Aug 24 2013