Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Nov 18 2024 18:55:54
%S 70,1372210,26898060350,527255777608490,10335267725783560630,
%T 202591917433553577860770,3971206755197249507443252910,
%U 77843594612784567411349065681050,1525890137628596335200014878036689190,29910498399952150749806124227926115821330
%N x-values in the solution to the Pell equation x^2 - 29*y^2 = -1.
%H Colin Barker, <a href="/A228521/b228521.txt">Table of n, a(n) for n = 1..200</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (19602,-1).
%F a(n) = 19602*a(n-1)-a(n-2).
%F G.f.: 70*x*(x+1) / (x^2-19602*x+1).
%t LinearRecurrence[{19602,-1},{70,1372210},20] (* _Harvey P. Dale_, Nov 18 2024 *)
%o (PARI) Vec(70*x*(x+1)/(x^2-19602*x+1) + O(x^100))
%Y Cf. A228522 gives the corresponding y-values.
%K nonn,easy
%O 1,1
%A _Colin Barker_, Aug 24 2013