%I #19 Feb 11 2024 04:41:28
%S 120960,4682880,54268416,364571136,1758756096,6759726336,21978671616,
%T 62815154688,161990345088,384087420288,849090198528,1768911326208,
%U 3502103394816,6633368787456,12086145432576,21278464551936,36334471510656,60366490588800
%N a(n) = (128*n^4/25+14528*n^3/225+20344*n^2/75+661816*n/1575+168)*(n+6)!/n!.
%C Name was "Coefficients from quartic oscillator number 22".
%C See comment and example in A225010.
%H <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
%F G.f.: 1152*(105 +2910*x +8168*x^2 +4530*x^3 +415*x^4)/(1-x)^11. [_Bruno Berselli_, Oct 16 2013]
%e For n=4 the solution is 1758756096.
%t Table[(128 n^4/25 + 14528 n^3/225 + 20344 n^2/75 + 661816 n/1575 + 168) (n + 6)!/n!, {n, 0, 20}] (* _Bruno Berselli_, Oct 16 2013 *)
%o (Magma) m:=20; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1152*(105+2910*x+8168*x^2+4530*x^3+415*x^4)/(1-x)^11)); // _Bruno Berselli_, Oct 16 2013
%Y Cf. A225010.
%K nonn,easy
%O 0,1
%A _Charles A. Lane_, Aug 23 2013