login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A228435 Integer areas of the mixtilinear triangles of integer-sided triangles. 0

%I #17 Dec 06 2015 21:15:13

%S 6,14,24,54,56,84,96,112,124,126,130,150,154,156,210,216,224,266,294,

%T 336,342,344,350,366,384,436,448,456,486,496,504,520,531,546,570,600,

%U 616,624,630,660,686,726,756,814,840,864,896,924,1008,1014,1064,1116,1134

%N Integer areas of the mixtilinear triangles of integer-sided triangles.

%C The mixtilinear triangle is the triangle connecting the centers of the mixtilinear incircles.

%C A circle that in internally tangent to two sides of a triangle and to the circumcircle is called a mixtilinear incircle. There are three mixtilinear incircles, one corresponding to each angle of the triangle.

%C The area of the mixtilinear triangle is given by

%C A' = A*(a^3 - a^2*b - a*b^2 + b^3 - a^2*c + 6*a*b*c - b^2*c - a*c^2 - b*c^2 + c^3)/(a + b + c)^3

%C where A is the area of the reference triangle of sides (a, b, c).

%C See the link for the side lengths of the mixtilinear triangles.

%C Properties of this sequence:

%C The primitive mixtilinear triangles are 6, 14, 84, 112, 124, 130, ...

%C The nonprimitive triangles of areas 4*a(n), 9*a(n), ..., p^2*a(n), ... are in the sequence.

%C It appears that if the triangles are isosceles, one of the sides of the mixtilinear triangles is integer, for example, for the triangles of areas a(n) = 112, 342, 448, 1008, 1368, 1792, 2800, 3078, 4032, 5472, ... corresponding to a triangle with an integer side of values respectively 8, 24, 16, 24, 48, 32, 40, 72, 48, 96, ...

%C The following table gives the first values (A', A, a, b, c, a', b', c') where A' is the area of the mixtilinear triangles, A is the area of the initial triangles, a, b, c are the integer sides of the initial triangles, and a', b', c' are the sides of the mixtilinear triangles.

%C -------------------------------------------------------------------------------

%C A' | A| a| b| c| a' | b' | c'

%C -------------------------------------------------------------------------------

%C 6 | 54| 9|12| 15| 9*sqrt(5)/4 | 4*sqrt(13)/3 | 5*sqrt(37)/12

%C 14 | 126|15|28| 41|135*sqrt(1717)/196 |28*sqrt(757)/27 | 41*sqrt(16045)/5292

%C 24 | 216|18|24| 30| 9*sqrt(5)/2 | 8*sqrt(13)/3 | 5*sqrt(37)/6

%C 56 | 504|30|56| 82|135*sqrt(1717)/98 |56*sqrt(757)/27 | 41*sqrt(16045)/2646

%C 84 | 756|39|42| 45|104*sqrt(445)/147 | 7*sqrt(37)/3 | 45*sqrt(197)/49

%C 96 | 864|36|48| 60| 9*sqrt(5) |16*sqrt(13)/3 | 5*sqrt(37)/3

%C 112| 972|45|45| 72| 20*sqrt(2) |20*sqrt(2) | 8

%C 124|1116|39|62| 85|351*sqrt(8605)/961 |31*sqrt(853)/27 |680*sqrt(79957)/25947

%C 126|1134|45|84|123|405*sqrt(1717)/196 |28*sqrt(757)/9 | 41*sqrt(16045)/1764

%C ...............................................................................

%H Wolfram MathWorld, <a href="http://mathworld.wolfram.com/MixtilinearTriangle.html">Mixtilinear triangles</a>

%e 6 is in the sequence. We use two ways:

%e First way: from the initial triangle (9, 12, 15) the formula given in the comments gives directly the area of the mixtilinear triangle: A' = 54*(9^3 - 9^2*12 - 9*12^2 + 12^3 - 9^2*15 + 6*9*12*15 - 12^2*15 - 9*15^2 - 12*15^2 + 15^3)/(9 + 12 + 15)^3 = 6, where the area of the initial triangle A = 54 is obtained by Heron's formula A = sqrt(s*(s-a)*(s-b)*(s-c)) = sqrt(18*(18-9)*(18-12)*(18-15)) = sqrt(2916) = 54, where s=18 is the semiperimeter.

%e Second way: by calculation of the sides a', b', c' and by use of Heron's formula. With the formulas given in the link, we find

%e a’ = 9*sqrt(5)/4;

%e b’ = 4*sqrt(13)/3;

%e c’ = 5*sqrt(37)/12.

%e Now, we use Heron's formula with (a',b',c'). We find A' = sqrt(s1*(s1-a')*(s1-b')*(s1-c')) with:

%e s1 = (a' + b' + c')/2 = (9*sqrt(5)/4 + 4*sqrt(13)/3 + 5*sqrt(37)/12)/2.

%e We find A' = 6.

%t nn = 500; lst = {}; Do[s = (a + b + c)/2; t = a^3 - a^2*b - a*b^2 + b^3 - a^2*c + 6*a*b*c - b^2*c - a*c^2 - b*c^2 + c^3; If[IntegerQ[s], area2 = s (s - a) (s - b) (s - c); If[0 < area2 && IntegerQ[Sqrt[area2] * t/(a + b + c)^3], AppendTo[lst, Sqrt[area2] * t/(a + b + c)^3]]], {a, nn}, {b, a}, {c, b}]; Union[lst]

%Y Cf. A188158.

%K nonn

%O 1,1

%A _Michel Lagneau_, Nov 10 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 2 15:15 EDT 2024. Contains 372197 sequences. (Running on oeis4.)