login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228432
Sum_{i=1..floor(prime(n)/4)} floor(sqrt(i*prime(n))).
1
0, 0, 2, 2, 7, 14, 24, 25, 37, 70, 71, 114, 140, 143, 170, 234, 274, 310, 357, 399, 444, 498, 552, 660, 784, 850, 856, 926, 990, 1064, 1310, 1395, 1564, 1574, 1850, 1859, 2054, 2173, 2277, 2494, 2623, 2730, 2986, 3104, 3234, 3246, 3656, 4085, 4235, 4370
OFFSET
1,3
COMMENTS
If p = prime(n) in A002145 and n>3, or said differently, if n in A080148 and n>1, then a(n) = A081115(n).
LINKS
S. A. Shirali, A family portrait of primes -- a case study in discrimination, Math. Mag., Vol. 70, No. 4 (Oct. 1997), pp. 263-272.
EXAMPLE
For n=7, p=17 and a(7) = floor(sqrt(17)) + floor(sqrt(34)) + floor(sqrt(51)) + floor(sqrt(68)) = 4+5+7+8 = 24.
MATHEMATICA
Table[p = Prime[n]; Sum[Floor[Sqrt[i*p]], {i, Floor[p/4]}], {n, 100}] (* T. D. Noe, Nov 13 2013 *)
PROG
(PARI) a(n) = p = prime(n); sum(i=1, p\4, sqrtint(i*p));
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Marcus, Nov 11 2013
STATUS
approved