login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228360
Table read by antidiagonals: T(l,L) is the number of all possible covers of L-length line segment by l-length line segments with allowed gaps < l.
2
0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 3, 2, 0, 0, 0, 0, 1, 4, 3, 1, 0, 0, 0, 0, 1, 5, 3, 2, 0, 0, 0, 0, 0, 1, 7, 4, 3, 1, 0, 0, 0, 0, 0, 1, 9, 6, 4, 2, 0, 0, 0, 0, 0, 0, 1, 12, 8, 4, 3, 1, 0, 0, 0, 0, 0, 0
OFFSET
1,12
COMMENTS
Second row is A228361 which also corresponds to Padovan's spiral numbers A134816 for n>1.
Third row is A228362.
T(l,L) is also the number of compositions of L where parts do not exceeds l and where are no two adjacent parts less than l.
T(2,5) = 3: [2,2,1], [2,1,2], [1,2,2]
T(2,9) = 9: [2,2,2,2,1], [2,2,2,1,2], [2,2,1,2,2], [2,1,2,2,2], [1,2,2,2,2], [2,1,2,1,2,1], [1,2,2,1,2,1], [1,2,1,2,2,1], [1,2,1,2,1,2]
T(3,8) = 6: [3,3,2], [3,1,3,1], [3,2,3], [1,3,3,1], [1,3,1,3], [2,3,3]
FORMULA
For all l>=1:
G.f.: (1 - Sum[x^i, {i, l, 2 l - 1}])^-1*Sum[x^i, {i, 0, l - 1}]^2*x^l.
G.f. for l=1: x/(1-x).
G.f. for l=2: x^2*(1+x)^2/(1-x^2-x^3).
G.f. for l=3: x^3*(1 + x + x^2)^2/(1 - x^3 - x^4 - x^5).
For l>1, L>=0:
c[k, l, m] = Sum[(-1)^i binomial[k - 1 - i*l, m - 1] binomial[m, i], {i, 0, floor[(k - m)/l]}] // number of compositions of k into exactly m parts which do not exceed l.
a[L, l, m] = Sum[ binomial[m + 1, m + 1 - j]*c[L - l*m, l - 1, j], {j, 0, m + 1}] //the number of all possible covers of L-length line segment by m l-length line segments.
T[l, L] := Sum[a[L, l, j], {j, 1, ceiling[L/l]}].
EXAMPLE
Table starts:
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 0, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, ...
0, 0, 0, 1, 2, 3, 3, 4, 6, 8, 10, 13, 18, 24, 31, ...
0, 0, 0, 0, 1, 2, 3, 4, 4, 5, 7, 10, 13, 16, 20, ...
0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 5, 6, 8, 11, 15, ...
0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 6, 7, 9, ...
0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 7, ...
0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, ...
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, ...
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, ...
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, ...
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, ...
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, ...
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, ...
.....................................................
MATHEMATICA
Gf[l_, z] := (1 - Sum[z^i, {i, l, 2 l - 1}])^-1*Sum[z^i, {i, 0, l - 1}]^2*z^l
T[l_, L_] := CoefficientList[Series[Gf[l, z], {z, 0, 100}], z][[L + 1]]
Table[T[n - b + 1, b - 1], {n, 1, 30}, {b, n, 1, -1}] // Flatten
CROSSREFS
Sequence in context: A325336 A060016 A117408 * A303138 A276205 A244966
KEYWORD
nonn,tabl
AUTHOR
Philipp O. Tsvetkov, Aug 21 2013
STATUS
approved