Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 May 28 2018 03:42:54
%S 203,280,369,470,583,708,845,994,1155,1328,1513,1710,1919,2140,2373,
%T 2618,2875,3144,3425,3718,4023,4340,4669,5010,5363,5728,6105,6494,
%U 6895,7308,7733,8170,8619,9080,9553,10038,10535,11044,11565
%N The Wiener index of the graph obtained by applying Mycielski's construction to the cycle graph C(n).
%D D. B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001, p. 205.
%H R. Balakrishnan, S. F. Raj, <a href="http://dx.doi.org/10.7151/dmgt.1509">The Wiener number of powers of the Mycielskian</a>, Discussiones Math. Graph Theory, 30, 2010, 489-498 (see Theorem 2.1).
%H M. Eliasi, G.Raeisi, B. Taeri, <a href="https://doi.org/10.1016/j.dam.2012.01.014">Wiener index of some graph operations</a>, Discrete Appl. Math., 160, 2012, 1333-1344 (see Example 2.5).
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F a(n) = 6n^2 - 13n.
%F G.f.: x^7*(203 - 329*x + 138*x^2)/(1 - x)^3.
%F The Hosoya-Wiener polynomial is conjectured to be 4nt +(1/2)n(n+9)t^2 + n(n-4)t^3 + (1/2)n(n-7)t^4.
%p a := proc (n) options operator, arrow: 6*n^2-13*n end proc: seq(a(n), n = 7 .. 45);
%t DeleteCases[CoefficientList[Series[x^7*(203 - 329 x + 138 x^2)/(1 - x)^3, {x, 0, 45}], x], 0] (* or *)
%t Array[6 #^2 - 13 # &, 39, 7] (* _Michael De Vlieger_, May 27 2018 *)
%o (PARI) a(n)=6*n^2-13*n \\ _Charles R Greathouse IV_, Jun 17 2017
%K nonn,easy
%O 7,1
%A _Emeric Deutsch_, Aug 27 2013