login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A(n,k) = Sum_{i=1..k} n^i; square array A(n,k), n>=0, k>=0, read by antidiagonals.
21

%I #36 Oct 22 2019 17:55:39

%S 0,0,0,0,1,0,0,2,2,0,0,3,6,3,0,0,4,14,12,4,0,0,5,30,39,20,5,0,0,6,62,

%T 120,84,30,6,0,0,7,126,363,340,155,42,7,0,0,8,254,1092,1364,780,258,

%U 56,8,0,0,9,510,3279,5460,3905,1554,399,72,9,0

%N A(n,k) = Sum_{i=1..k} n^i; square array A(n,k), n>=0, k>=0, read by antidiagonals.

%C A(n,k) is the total sum of lengths of longest ending contiguous subsequences with the same value over all s in {1,...,n}^k:

%C A(4,1) = 4 = 1+1+1+1: [1], [2], [3], [4].

%C A(1,4) = 4: [1,1,1,1].

%C A(3,2) = 12 = 2+1+1+1+2+1+1+1+2: [1,1], [1,2], [1,3], [2,1], [2,2], [2,3], [3,1], [3,2], [3,3].

%C A(2,3) = 14 = 3+1+1+2+2+1+1+3: [1,1,1], [1,1,2], [1,2,1], [1,2,2], [2,1,1], [2,1,2], [2,2,1], [2,2,2].

%H Alois P. Heinz, <a href="/A228275/b228275.txt">Antidiagonals n = 0..140, flattened</a>

%F A(1,k) = k, else A(n,k) = n/(n-1)*(n^k-1).

%F A(n,k) = Sum_{i=1..k} n^i.

%F A(n,k) = Sum_{i=1..k+1} binomial(k+1,i)*A(n-i,k)*(-1)^(i+1) for n>k, given values A(0,k), A(1,k),..., A(k,k). - _Yosu Yurramendi_, Sep 03 2013

%e Square array A(n,k) begins:

%e 0, 0, 0, 0, 0, 0, 0, 0, ...

%e 0, 1, 2, 3, 4, 5, 6, 7, ...

%e 0, 2, 6, 14, 30, 62, 126, 254, ...

%e 0, 3, 12, 39, 120, 363, 1092, 3279, ...

%e 0, 4, 20, 84, 340, 1364, 5460, 21844, ...

%e 0, 5, 30, 155, 780, 3905, 19530, 97655, ...

%e 0, 6, 42, 258, 1554, 9330, 55986, 335922, ...

%e 0, 7, 56, 399, 2800, 19607, 137256, 960799, ...

%p A:= (n, k)-> `if`(n=1, k, (n/(n-1))*(n^k-1)):

%p seq(seq(A(n, d-n), n=0..d), d=0..12);

%t a[0, 0] = 0; a[1, k_] := k; a[n_, k_] := n*(n^k-1)/(n-1); Table[a[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* _Jean-François Alcover_, Dec 16 2013 *)

%Y Columns k=0-10 give: A000004, A001477, A002378, A027444, A027445, A152031, A228290, A228291, A228292, A228293, A228294.

%Y Rows n=0-11 give: A000004, A001477, A000918(k+1), A029858(k+1), A080674, A104891, A105281, A104896, A052379(k-1), A052386, A105279, A105280.

%Y Main diagonal gives A031972.

%Y Lower diagonal gives A226238.

%Y Cf. A228250.

%K nonn,tabl,easy

%O 0,8

%A _Alois P. Heinz_, Aug 19 2013