login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of third differences of arrays of length n+3 of numbers in 0..k
13

%I #4 Aug 19 2013 08:30:24

%S 9,17,31,25,143,63,33,319,621,127,41,565,2511,2059,255,49,881,6419,

%T 13933,6305,511,57,1267,12947,53315,58911,19171,1023,65,1723,22727,

%U 141989,315601,242461,58025,2047,73,2249,36471,310425,1161855,1688101,989527

%N T(n,k)=Number of third differences of arrays of length n+3 of numbers in 0..k

%C Table starts

%C ....9.....17.......25........33.........41..........49..........57...........65

%C ...31....143......319.......565........881........1267........1723.........2249

%C ...63....621.....2511......6419......12947.......22727.......36471........54851

%C ..127...2059....13933.....53315.....141989......310425......596591......1045439

%C ..255...6305....58911....315601....1161855.....3298681.....7795501.....16171769

%C ..511..19171...242461...1688101....8003363....28791007....83538705....206640895

%C .1023..58025...989527...8717049...50554951...218845881...761638071...2238075697

%C .2047.175099..4017157..44633821..313882531..1609259287..6537612649..22217937193

%C .4095.527345.16245775.227363409.1932641711.11658284065.54701587935.211702564321

%H R. H. Hardin, <a href="/A228260/b228260.txt">Table of n, a(n) for n = 1..160</a>

%F Empirical for column k:

%F k=1: a(n) = 3*a(n-1) -2*a(n-2) for n>3

%F k=2: a(n) = 5*a(n-1) -6*a(n-2) for n>5

%F k=3: a(n) = 7*a(n-1) -12*a(n-2) for n>7

%F k=4: a(n) = 9*a(n-1) -20*a(n-2) for n>8

%F k=5: a(n) = 11*a(n-1) -30*a(n-2) for n>10

%F k=6: a(n) = 13*a(n-1) -42*a(n-2) for n>12

%F k=7: a(n) = 15*a(n-1) -56*a(n-2) for n>14

%F Empirical for row n:

%F n=1: a(n) = 8*n + 1

%F n=2: a(n) = 35*n^2 + 1*n + 1 for n>1

%F n=3: a(n) = 112*n^3 - 34*n^2 - 38*n - 13 for n>4

%F n=4: a(n) = 294*n^4 - 256*n^3 - 489*n^2 + 477*n + 415 for n>8

%F n=5: a(n) = 672*n^5 - 1152*n^4 - 3340*n^3 + 8908*n^2 + 4108*n - 14279 for n>13

%e Some solutions for n=4 k=4

%e ..3...-5....5...-6....3...-7...-8...12....9...13....9...-1....3...-8....7...10

%e ..0....1...-4....7....0....7....3...-7..-12..-13...-3....0...-1...13...-6..-12

%e .-7....4....6...-7...-6...-7....4...-3...11...13...-5....4...-5..-12....8...12

%e .10...-8...-1....2...10...-1...-8....8...-8..-15....0...-5....7....8...-6...-9

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_ Aug 19 2013