login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228180
The number of single edges on the boundary of ordered trees with n edges.
2
0, 1, 2, 6, 19, 61, 199, 661, 2234, 7668, 26674, 93858, 333524, 1195288, 4315468, 15681838, 57312643, 210529213, 776872243, 2878482523, 10704933793, 39945106573, 149511432793, 561182969173, 2111812422871, 7965992783803, 30114859723751, 114079902339303, 432975153092011, 1646215731143667
OFFSET
0,3
COMMENTS
Apparently the partial sums of A070031. - R. J. Mathar, Aug 25 2013
LINKS
Dennis E. Davenport, Lara K. Pudwell, Louis W. Shapiro, and Leon C. Woodson, The Boundary of Ordered Trees, Journal of Integer Sequences, Vol. 18 (2015), Article 15.5.8; preprint, 2014.
W. Kuszmaul, Fast Algorithms for Finding Pattern Avoiders and Counting Pattern Occurrences in Permutations, arXiv preprint arXiv:1509.08216 [cs.DM], 2015-2017.
FORMULA
G.f.: (x*C+2*x^3*C^4)/(1-x) where C is the g.f. for the Catalan numbers A000108.
Conjecture: 2*(n+1)*a(n) +(-13*n+5)*a(n-1) +(23*n-37)*a(n-2) +6*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Aug 25 2013
a(n) ~ 5*4^n / (3*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Feb 01 2014
EXAMPLE
For n=3 the UUUDDD has 3 single edges while UUDDUD, UDUUDD and UUDUDD each have one single edge, i.e., an edge with no siblings.
MATHEMATICA
CoefficientList[Series[(x*(1-Sqrt[1-4*x])/(2*x) + 2*x^3*((1-Sqrt[1-4*x])/(2*x))^4)/(1-x), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 01 2014 *)
PROG
(PARI)
x = 'x + O('x^66);
C = serreverse( x/( 1/(1-x) ) ) / x; \\ Catalan A000108
gf = (x*C+2*x^3*C^4)/(1-x);
concat([0], Vec(gf) ) \\ Joerg Arndt, Aug 21 2013
CROSSREFS
Sequence in context: A138747 A052975 A275943 * A035929 A071646 A114627
KEYWORD
nonn
AUTHOR
Louis Shapiro, Aug 20 2013
STATUS
approved