|
|
A228141
|
|
Numbers that are congruent to {1, 5} mod 20.
|
|
2
|
|
|
1, 5, 21, 25, 41, 45, 61, 65, 81, 85, 101, 105, 121, 125, 141, 145, 161, 165, 181, 185, 201, 205, 221, 225, 241, 245, 261, 265, 281, 285, 301, 305, 321, 325, 341, 345, 361, 365, 381, 385, 401, 405, 421, 425, 441, 445, 461, 465, 481, 485, 501, 505, 521, 525
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) = -3*(4+(-1)^n) + 10*n.
a(n) = a(n-1) + a(n-2) - a(n-3).
G.f.: x*(15*x^2+4*x+1) / ((x-1)^2*(x+1)).
E.g.f.: 15 + (10*x - 12)*exp(x) - 3*exp(-x). - David Lovler, Sep 05 2022
|
|
MATHEMATICA
|
Flatten[Table[20n + {1, 5}, {n, 0, 24}]] (* Alonso del Arte, Aug 12 2013 *)
|
|
PROG
|
(PARI) Vec(x*(15*x^2+4*x+1)/((x-1)^2*(x+1)) + O(x^100))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|