login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (1^2 + 1)*(2^2 + 1)*(3^2 + 1)*...*(((prime(n) - 1)/2)^2 + 1).
1

%I #23 Feb 24 2022 02:55:09

%S 2,10,100,44200,1635400,5315050000,435834100000,5370347780200000,

%T 26078677338040210000000,5893781078397087460000000,

%U 142760638726203851727985000000000,20723419838773203524537758570000000000,9159751568737755957845689287940000000000,2354514140744040168964234431464977000000000000

%N a(n) = (1^2 + 1)*(2^2 + 1)*(3^2 + 1)*...*(((prime(n) - 1)/2)^2 + 1).

%C The author has shown that a(n) == 2 (mod p_n) if p_n == 3 (mod 4). He has also established the following general theorem:

%C Let p be any odd prime and let d be any quadratic non-residue modulo p. Then we have the congruence

%C Product_{x=1..(p-1)/2} (x^2 - d) == 2*(-1)^((p+1)/2) (mod p).

%C This can be proved as follows: By Wilson's theorem we have (((p-1)/2)!)^2 == (-1)^((p+1)/2) (mod p), and thus we reduce the desired congruence to

%C Product_{0<k<p,(k/p)=-1} (1 - k) == 2 (mod p). (*)

%C Clearly

%C Product_{1<k<p, (k/p)=1} (1 - k)

%C == Product_{j=2..(p-1)/2} (1 - j^2)

%C = (-1)^((p+1)/2)*((p-1)/2)!)^2*(p+1)/(2p-2)

%C == -1/2 (mod p),

%C and Product_{k=2..p-1} (1 - k) = (-1)^(p-2)*(p-2)! == -1 (mod p) by Wilson's theorem. Therefore (*) follows.

%H Zhi-Wei Sun, <a href="/A228120/b228120.txt">Table of n, a(n) for n = 2..30</a>

%e a(3) = (1^1+1)*(2^2+1)*(3^2+1) = 100 and a(3) == 2 (mod 7).

%t a[n_]:=Product[(x^2+1),{x,1,(Prime[n]-1)/2}]

%t Table[a[n],{n,2,15}]

%Y Cf. A101686, A000040.

%K nonn

%O 2,1

%A _Zhi-Wei Sun_, Aug 11 2013