OFFSET
0,1
COMMENTS
In the formula, alpha(q) and beta(q) are level three modular forms of weight 1 and 3 that generate the space of modular forms with respect to the group Gamma_0(3). Legendre(p/q) is the Legendre symbol.
LINKS
B. Hassett, Special Cubic Fourfolds, Compositio Mathematica 120 (2000), no 1, 1-23.
L. Zhang and Z. Li, Modular Forms and Special Cubic Fourfolds, Advances in Mathematics, 2013, 315-326.
L. Zhang and Z. Li, Modular Forms and Special Cubic Fourfolds, arXiv:1203.1373 [math.AG], 2012-2015.
FORMULA
a(n) = coefficient of q^n in (-alpha3^11 + 162*alpha3^8*beta3 + 91854*alpha3^5*beta3^2 + 2204496*alpha3^2*beta3^3 - alpha^11 + 66*alpha^8*beta - 1386*alpha^5*beta^2 + 9072*alpha^2*beta^3), where alpha(q) = 1+6*Sum_{n>=1}(q^n * Sum_{d|n}Legendre(d/3)); alpha3(q) = alpha(q^3); beta(q) = Sum_{n>=1}(q^n * Sum_{d|n}(n/d)^2*Legendre(d/3)); beta3(q) = beta(q^3).
EXAMPLE
For n = 0, a(0)= -2, corresponds to degree of special cubic fourfold of discriminant 0;
For n = 3, a(3) = 192, corresponds to degree of special cubic fourfold of discriminant 2*3 = 6;
For n = 4, a(4) = 3402, corresponds to degree of special cubic fourfold of discriminant 2*4 = 8;
In general, a(n) != 0 if and only if 2n==0,2 mod 6.
CROSSREFS
KEYWORD
sign
AUTHOR
Letao Zhang, Aug 08 2013
STATUS
approved