login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of psi(x^2)^2 * phi(-x^2)^6 + 8 * x * psi(x^2)^6 * phi(-x^2)^2 in powers of x where phi(), psi() are Ramanujan theta functions.
1

%I #32 Mar 12 2021 22:24:47

%S 1,8,-10,16,37,-40,-50,-80,-30,40,128,48,-25,80,-34,320,-320,-160,310,

%T -400,410,152,-370,-416,-87,-240,-410,400,320,-200,30,592,500,776,384,

%U 400,-630,-200,-640,-1120,-359,552,300,-272,-326,-800,2560,-400,-110

%N Expansion of psi(x^2)^2 * phi(-x^2)^6 + 8 * x * psi(x^2)^6 * phi(-x^2)^2 in powers of x where phi(), psi() are Ramanujan theta functions.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%H G. C. Greubel, <a href="/A228072/b228072.txt">Table of n, a(n) for n = 0..1000</a>

%H Hossein Movasati, Younes Nikdelan, <a href="https://arxiv.org/abs/1803.01414">Product formulas for weight two newforms</a>, arXiv:1803.01414 [math.NT], 2018.

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F Expansion of q^(-1/2) * ((eta(q^2)^5 / eta(q^4))^2 + 8 * (eta(q^4)^5 / eta(q^2))^2) in powers of q.

%F Expansion of q^(-1/2) * (eta(q^2)^12 + 8 * eta(q^4)^12) / ( eta(q^2) * eta(q^4) )^2 in powers of q.

%F a(n) = b(2*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(p^e) = b(p) * b(p^(e-1)) - p^3 * b(p^(e-2)) if p>2.

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 8^2 (t / i)^4 f(t) where q = exp(2 Pi i t).

%F a(2*n) = A227695(n). a(2*n + 1) = 8 * A227317(n).

%F If F(x) is the g.f. for A002171, then A(x) * F(x^2) = B(x) the g.f. for A227239. - _Michael Somos_, Jan 08 2015

%e G.f. = 1 + 8*x - 10*x^2 + 16*x^3 + 37*x^4 - 40*x^5 - 50*x^6 - 80*x^7 - 30*x^8 + ...

%e G.f. = q + 8*q^3 - 10*q^5 + 16*q^7 + 37*q^9 - 40*q^11 - 50*q^13 - 80*q^15 - 30*q^17 + ...

%t a[ n_] := SeriesCoefficient[ (QPochhammer[ x^2]^12 + 8 x QPochhammer[ x^4]^12) / (QPochhammer[ x^2] QPochhammer[ x^4])^2, {x, 0, n}];

%o (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n);polcoeff( (eta(x^2 + A)^5 / eta(x^4 + A))^2 + 8 * x * (eta(x^4 + A)^5 / eta(x^2 + A))^2, n))};

%Y Cf. A002171, A227239, A227317, A227695.

%K sign

%O 0,2

%A _Michael Somos_, Sep 02 2013