login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228012
The 2-color Rado number for the equation x_1 + x_2 + ... + x_n = 2*x_0
0
1, 4, 5, 8, 9, 14, 16, 23, 25, 33, 36, 46, 49, 60, 64, 77, 81, 95, 100, 116, 121, 138, 144, 163, 169, 189, 196, 218, 225, 248, 256, 281, 289, 315, 324, 352, 361, 390, 400, 431, 441, 473, 484, 518, 529, 564, 576, 613, 625, 663, 676, 716, 729, 770, 784, 827, 841
OFFSET
2,2
COMMENTS
For n=1, the Rado number is infinity (since the positive integers can be colored using two colors in such a way that no monochromatic solution to the equation x_1 = 2*x_0 exists).
REFERENCES
D. Schaal and D. Vestal, Rado numbers for x_1 + x_2 + ... + x_(m-1) = 2*x_m, Congressus Numerantium, 191(2008), 105-116.
FORMULA
For n >= 5, a(n) = ceiling(ceiling(n/2)*n/2).
Conjecture: For n >= 5, a(n) = (1-(-1)^n+i*(-i)^n-i*i^n+n-(-1)^n*n+2*n^2)/8, where i=sqrt(-1). G.f.: x^2*(x^9-2*x^7-x^6+x^5+x^4-3*x-1) / ((x-1)^3*(x+1)^2*(x^2+1)). - Colin Barker, Aug 12 2013
EXAMPLE
For n=4, we have a(4) = 5, meaning that the 2-color Rado number for the equation E:x_1 + x_2 + x_3 + x_4 = 2*x_0 is 5. The coloring (or partition) Red = {1,4} and Blue = {2,3} avoids a monochromatic solution to E; however, any 2-coloring of the integers {1,2,3,4,5} will have a monochromatic solution to E.
CROSSREFS
Sequence in context: A020668 A020934 A094004 * A067271 A268128 A064394
KEYWORD
easy,nonn
AUTHOR
Donald Vestal, Aug 08 2013
STATUS
approved