OFFSET
2,2
COMMENTS
For n=1, the Rado number is infinity (since the positive integers can be colored using two colors in such a way that no monochromatic solution to the equation x_1 = 2*x_0 exists).
REFERENCES
D. Schaal and D. Vestal, Rado numbers for x_1 + x_2 + ... + x_(m-1) = 2*x_m, Congressus Numerantium, 191(2008), 105-116.
FORMULA
For n >= 5, a(n) = ceiling(ceiling(n/2)*n/2).
Conjecture: For n >= 5, a(n) = (1-(-1)^n+i*(-i)^n-i*i^n+n-(-1)^n*n+2*n^2)/8, where i=sqrt(-1). G.f.: x^2*(x^9-2*x^7-x^6+x^5+x^4-3*x-1) / ((x-1)^3*(x+1)^2*(x^2+1)). - Colin Barker, Aug 12 2013
EXAMPLE
For n=4, we have a(4) = 5, meaning that the 2-color Rado number for the equation E:x_1 + x_2 + x_3 + x_4 = 2*x_0 is 5. The coloring (or partition) Red = {1,4} and Blue = {2,3} avoids a monochromatic solution to E; however, any 2-coloring of the integers {1,2,3,4,5} will have a monochromatic solution to E.
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Donald Vestal, Aug 08 2013
STATUS
approved