login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Minimum composite squarefree numbers k such that p(i)-n divides k+n, for n=1, 2, 3, 4,..., where p(i) are the prime factors of k.
3

%I #7 Aug 06 2013 14:40:37

%S 15,273,77,6,21,6,33,10,15,14,21,33,35,22,33,26,39,57,65,34,51,38,57,

%T 551,95,46,69,203,115,145,161,58,87,62,93,629,155,697,217,74,111,518,

%U 185,82,123,86,129,2537,215,94,141,689,235,4366,329,106,159,1247,265

%N Minimum composite squarefree numbers k such that p(i)-n divides k+n, for n=1, 2, 3, 4,..., where p(i) are the prime factors of k.

%H Paolo P. Lava, <a href="/A227973/b227973.txt">Table of n, a(n) for n = 1..500</a>

%e For n=185 the minimum k is 543. Prime factors of 543 are 3 and 181. We have: 543 + 185 = 728, 3 - 185 = -182 and 728 / (-182) = -4, 181 - 185 = -4 and 728 / (-4) = 182.

%p with(numtheory); P:=proc(i) local c, d, k, n, ok, p; for k from 1 to i do

%p for n from 2 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1;

%p for d from 1 to nops(p) do if p[d][2]>1 or p[d][1]=k then ok:=0; break; fi;

%p if not type((n+k)/(p[d][1]-k), integer) then ok:=0; break; fi; od;

%p if ok=1 then print(n); break; fi; fi; od; od; end: P(10^6);

%Y Cf. A208728, A225702-A225720, A227974-A227976.

%K nonn

%O 1,1

%A _Paolo P. Lava_, Aug 02 2013