Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Dec 20 2020 07:32:00
%S 0,0,0,0,5,50,328,2154,16751,144840,1314149,12735722,134159743,
%T 1519210786,18272249418,233231701166,3159471128588,45243728569842,
%U 682183513506619,10807962134238068,179606706777512992,3123700853586733882,56737351453843424893
%N Number of permutations of [n] with exactly one occurrence of the consecutive step pattern up, down, up.
%H Alois P. Heinz and Vaclav Kotesovec, <a href="/A227883/b227883.txt">Table of n, a(n) for n = 0..460</a> (first 195 terms from Alois P. Heinz)
%F a(n) ~ c * d^n * n! * n, where d = A245758 = 0.782704180171521701844707..., c = 0.575076701401064911213333442496869737011... . - _Vaclav Kotesovec_, Aug 22 2014
%e a(4) = 5: 1324, 1423, 2314, 2413, 3412.
%e a(5) = 50: 12435, 12534, 13245, ..., 52314, 52413, 53412.
%p b:= proc(u, o, t) option remember;
%p `if`(t=7, 0, `if`(u+o=0, `if`(t in [4, 5, 6], 1, 0),
%p add(b(u-j, o+j-1, [1, 3, 1, 5, 6, 6][t]), j=1..u)+
%p add(b(u+j-1, o-j, [2, 2, 4, 4, 7, 4][t]), j=1..o)))
%p end:
%p a:= n-> b(n, 0, 1):
%p seq(a(n), n=0..25);
%t b[u_, o_, t_] := b[u, o, t] =
%t If[t == 7, 0, If[u + o == 0, If[4 <= t <= 6, 1, 0],
%t Sum[b[u - j, o + j - 1, {1, 3, 1, 5, 6, 6}[[t]]], {j, 1, u}] +
%t Sum[b[u + j - 1, o - j, {2, 2, 4, 4, 7, 4}[[t]]], {j, 1, o}]]];
%t a[n_] := b[n, 0, 1];
%t a /@ Range[0, 25] (* _Jean-François Alcover_, Dec 20 2020, after _Alois P. Heinz_ *)
%Y Column k=1 of A227884.
%Y Cf. A177477, A245758.
%K nonn
%O 0,5
%A _Alois P. Heinz_, Oct 25 2013