login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies: A(x) = Series_Reversion( x - (A(x)^2 + A(-x)^2)/2 ).
3

%I #29 Oct 23 2015 21:00:46

%S 1,1,2,10,44,294,1728,13389,93130,796620,6235288,57551130,493813936,

%T 4857378920,44989814920,468103507718,4633862094852,50749496457992,

%U 533271010341720,6126256486912776,67990630238066888,817168635245112432,9541543704324657008,119719059789052412360

%N G.f. A(x) satisfies: A(x) = Series_Reversion( x - (A(x)^2 + A(-x)^2)/2 ).

%H Paul D. Hanna, <a href="/A227852/b227852.txt">Table of n, a(n) for n = 1..300</a>

%F G.f. A(x) satisfies:

%F (1) A(x) = x + (A(A(x))^2 + A(-A(x))^2)/2.

%F (2) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) (A(x)^2 + A(-x)^2)^n / (n!*2^n).

%F (3) (A(I*x)^2 + A(-I*x)^2)/2 = -F(x), where F(x) is the g.f. of A263531 and satisfies: F(x) = B(x)^2 - C(x)^2 such that B(x) + I*C(x) = Series_Reversion(x - I*F(x)), where I^2 = -1.

%e G.f.: A(x) = x + x^2 + 2*x^3 + 10*x^4 + 44*x^5 + 294*x^6 + 1728*x^7 +...

%e The series reversion of A(x), G(x) where A(G(x)) = x, begins:

%e G(x) = x - x^2 - 5*x^4 - 112*x^6 - 4320*x^8 - 227766*x^10 - 14942616*x^12 - 1162657840*x^14 +...+ (-1)^n * A263531(n)*x^(2*n) +...

%e and can be formed from a bisection of A(x)^2:

%e A(x)^2 = x^2 + 2*x^3 + 5*x^4 + 24*x^5 + 112*x^6 + 716*x^7 + 4320*x^8 + 32290*x^9 + 227766*x^10 + 1893488*x^11 + 14942616*x^12 + 134816212*x^13 + 1162657840*x^14 +...

%e The related g.f. of A263531, F(x) = -(A(I*x)^2 + A(-I*x)^2)/2, satisfies: F(x) = B(x)^2 - C(x)^2 such that B(x) + I*C(x) = Series_Reversion(x - I*F(x)), where I^2 = -1:

%e F(x) = x^2 - 5*x^4 + 112*x^6 - 4320*x^8 + 227766*x^10 - 14942616*x^12 +...

%o (PARI) {a(n)=local(A=x);for(i=1,n,A=serreverse(x-(A^2+subst(A^2,x,-x +x*O(x^n)))/2));polcoeff(A,n)}

%o for(n=1,25,print1(a(n),", "))

%o (PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}

%o {a(n)=local(A=x+x^2+x*O(x^n)); for(i=1, n, A=x+sum(m=1, n, Dx(m-1, (A^2+subst(A,x,-x)^2)^m/2^m/m!))+x*O(x^n)); polcoeff(A,n)}

%o for(n=1,25,print1(a(n),", "))

%Y Cf. A263531, A213591, A141202.

%K nonn

%O 1,3

%A _Paul D. Hanna_, Oct 31 2013