Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #55 Jul 12 2024 10:18:00
%S 1,2,7,28,125,590,2891,14536,74497,387450,2038743,10830148,57986773,
%T 312542678,1694166275,9228580464,50486521785,277239830210,
%U 1527533993871,8441627856300,46776754474709,259830443968046,1446468759734131,8068688342238328,45091854560015025,252423540736438890
%N G.f.: Sum_{n>=0} x^n / (1-x)^(2*n+1) * [ Sum_{k=0..n} C(n,k)^2*x^k ]^2.
%C Equals antidiagonal sums of table A143007.
%H Vincenzo Librandi, <a href="/A227845/b227845.txt">Table of n, a(n) for n = 0..200</a>
%F G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k)^2 * Sum_{j=0..k} binomial(k,j)^2 * x^j.
%F a(n) = Sum_{k=0..[n/2]} Sum_{j=k..n-k} binomial(n-k,j)^2 * binomial(j,k)^2.
%F Recurrence: n^2*a(n) = 2*(3*n^2 - 3*n + 1)*a(n-1) - 2*(3*n^2 - 9*n + 7)*a(n-3) + (n-2)^2*a(n-4). - _Vaclav Kotesovec_, Jul 05 2014
%F a(n) ~ (3+2*sqrt(2))^(n+1) / (4*Pi*n). - _Vaclav Kotesovec_, Jul 05 2014
%F G.f.: 1 / AGM((1+x)^2, 1 - 6*x + x^2), where AGM(x,y) = AGM((x+y)/2,sqrt(x*y)) denotes the arithmetic-geometric mean. - _Paul D. Hanna_, Jul 31 2014
%F G.f. satisfies: A(x) = F(x*A(x))^2, where F(x) is the g.f. of A258053. - _Paul D. Hanna_, May 17 2015
%F G.f.: hypergeom([1/2, 1/2], [1], -16*x^2/((x+1)^2*(x^2-6*x+1)))/((x+1)*sqrt(x^2-6*x+1)). - _Mark van Hoeij_, Jul 08 2024
%F a(n) = U(n)*U(n-1) where the sequences U(-1),U(1),U(3),... and U(0),U(2),U(4),... satisfy a second order recurrence n^2*U(n) = 2*(3*n^2-3*n+1)*U(n-2) - (n-1)^2*U(n-4) with initial terms U(-1), U(1)=2 and U(0)=1, U(2)=7/2. - _Mark van Hoeij_, Jul 10 2024
%e G.f.: A(x) = 1 + 2*x + 7*x^2 + 28*x^3 + 125*x^4 + 590*x^5 + 2891*x^6 +...
%e where
%e A(x) = 1/(1-x) + x/(1-x)^3 * (1+x)^2 + x^2/(1-x)^5*(1 + 2^2*x + x^2)^2
%e + x^3/(1-x)^7 * (1 + 3^2*x + 3^2*x^2 + x^3)^2
%e + x^4/(1-x)^9 * (1 + 4^2*x + 6^2*x^2 + 4^2*x^3 + x^4)^2
%e + x^5/(1-x)^11 * (1 + 5^2*x + 10^2*x^2 + 10^2*x^3 + 5^2*x^4 + x^5)^2
%e + x^6/(1-x)^13 * (1 + 6^2*x + 15^2*x^2 + 20^2*x^3 + 15^2*x^4 + 6^2*x^5 + x^6)^2 +...
%e We can also express the g.f. by the binomial series identity:
%e A(x) = 1 + x*(1 + (1+x)) + x^2*(1 + 2^2*(1+x) + (1+2^2*x+x^2))
%e + x^3*(1 + 3^2*(1+x) + 3^2*(1+2^2*x+x^2) + (1+3^2*x+3^2*x^2+x^3))
%e + x^4*(1 + 4^2*(1+x) + 6^2*(1+2^2*x+x^2) + 4^2*(1+3^2*x+3^2*x^2+x^3) + (1+4^2*x+6^2*x^2+4^2*x^3+x^4))
%e + x^5*(1 + 5^2*(1+x) + 10^2*(1+2^2*x+x^2) + 10^2*(1+3^2*x+3^2*x^2+x^3) + 5^2*(1+4^2*x+6^2*x^2+4^2*x^3+x^4) + (1+5^2*x+10^2*x^2+10^2*x^3+5^2*x^4+x^5)) +...
%e The square-root of the g.f. is an integer series:
%e A(x)^(1/2) = 1 + x + 3*x^2 + 11*x^3 + 47*x^4 + 215*x^5 + 1029*x^6 +...+ A227846(n)*x^n +...
%e The g.f. also satisfies A(x) = F(x*A(x)^2) and F(x)^2 = A(x/F(x)^2)) where
%e F(x) = 1 + x + x^2 + x^4 - 2*x^5 - 4*x^6 - 7*x^8 + 20*x^9 + 42*x^10 + 84*x^12 - 272*x^13 - 584*x^14 - 1239*x^16 +...+ A258053(n)*x^n +...
%e such that A258053(4*n+3) = 0 for n>=0.
%p U := proc(n) options remember;
%p if n < 1 then 1
%p elif n = 1 then 2
%p elif n = 2 then 7/2
%p else
%p (2*(3*n^2-3*n+1)*U(n-2) - (n-1)^2*U(n-4))/n^2
%p fi
%p end:
%p seq(U(n)*U(n-1), n=0..25); # _Mark van Hoeij_, Jul 10 2024
%t Table[Sum[Sum[Binomial[n-k,j]^2*Binomial[j,k]^2,{j,k,n-k}],{k,0,Floor[n/2]}],{n,0,20}] (* _Vaclav Kotesovec_, Jul 05 2014 *)
%o (PARI) /* From definition: */
%o {a(n)=local(A=1); A=sum(m=0, n, x^m/(1-x)^(2*m+1)*sum(k=0, m, binomial(m, k)^2*x^k)^2+x*O(x^n)); polcoeff(A, n)}
%o for(n=0,30,print1(a(n),", "))
%o (PARI) /* From alternate g.f.: */
%o {a(n)=polcoeff(sum(m=0,n,x^m*sum(k=0,m,binomial(m,k)^2*sum(j=0,k,binomial(k,j)^2*x^j)+x*O(x^n))),n)}
%o for(n=0, 30, print1(a(n), ", "))
%o (PARI) /* From formula for a(n): */
%o {a(n)=sum(k=0,n\2,sum(j=k,n-k,binomial(n-k,j)^2*binomial(j,k)^2))}
%o for(n=0,30,print1(a(n),", "))
%o (PARI) /* From g.f.: 1/AGM((1+x)^2, 1-6*x+x^2) */
%o {a(n)=local(A);A = 1 / agm((1+x)^2, 1-6*x+x^2 +x*O(x^n));polcoeff(A,n)}
%o for(n=0,30,print1(a(n),", "))
%Y Cf. A227846, A245930, A143007.
%Y Cf. A258053.
%K nonn
%O 0,2
%A _Paul D. Hanna_, Aug 01 2013
%E Name changed by _Paul D. Hanna_, Sep 07 2014