login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of limit of c(n)/c(n-1), where c = A227816.
3

%I #19 May 22 2021 04:26:42

%S 2,4,8,5,6,2,2,8,2,6,3,9,3,3,0,3,3,2,1,6,1,2,4,0,6,1,9,1,1,8,6,9,3,4,

%T 2,3,0,7,0,6,0,0,5,5,7,5,0,1,5,7

%N Decimal expansion of limit of c(n)/c(n-1), where c = A227816.

%e 2.4856228263933033216124061911869342307060055750157...

%t z = 300; h[n_] := h[n] = HarmonicNumber[N[n, 500]]; x = 3; y = 6; a[1] = -1 + Ceiling[w /. FindRoot[h[w] == 2 h[y] - h[x - 1], {w, 1}, WorkingPrecision -> 400]]; a[2] = -1 + Ceiling[w /. FindRoot[h[w] == 2 h[a[1]] - h[y], {w, a[1]}, WorkingPrecision -> 400]]; Do[s = 0; a[t] = -1 + Ceiling[w /. FindRoot[h[w] == 2 h[a[t - 1]] - h[a[t - 2]], {w, a[t - 1]}, WorkingPrecision -> 400]], {t, 3, z}]; m = Map[a, Range[z]]; (* A227816 *)

%t x1 = N[Table[h[a[t]] - h[a[t - 1]], {t, 2, z, 50}], 50]

%t Last[RealDigits[x1, 10]] (* A227817 *)

%t x2 = N[Table[a[n]/a[n - 1], {n, 2, z, 50}], 50] (* A227818 *)

%t Last[RealDigits[x2, 10]] (* A227818 *)

%t (* _Peter J. C. Moses_, Jul 23 2013 *)

%Y Cf. A227816, A227817.

%K nonn,cons,more

%O 1,1

%A _Clark Kimberling_, Jul 31 2013