login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The Wiener index of the nanostar dendrimer defined pictorially as G(n) in the Darafsheh et al. reference.
1

%I #8 Jul 22 2022 11:18:05

%S 198,3834,34434,230418,1327410,7005042,34949106,167809266,783885042,

%T 3587327730,16158854898,71878385394,316494986994,1381924896498,

%U 5991517716210,25821420060402,110707230375666,472515428744946,2008808357363442,8510221225819890

%N The Wiener index of the nanostar dendrimer defined pictorially as G(n) in the Darafsheh et al. reference.

%C a(2) has been checked by the direct computation of the Wiener index (using Maple).

%D M. R. Darafsheh, M. H. Khalifeh, Calculation of the Wiener, Szeged, and PI indices of a certain nanostar dendrimer, Ars Comb., 100, 2011, 289-298.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (11,-42,64,-32).

%F a(n) = 4^n*(1728*n - 1872) + 2340*2^n -270.

%F G.f.: 18*(11+4*x)*(1+8*x)/((1-x)*(1-2*x)*(1-4*x)^2).

%p a := proc (n) options operator, arrow: 4^n*(1728*n-1872)+2340*2^n-270 end proc: seq(a(n), n = 0 .. 22);

%Y Cf. A227706.

%K nonn,easy

%O 0,1

%A _Emeric Deutsch_, Jul 29 2013