OFFSET
2,1
COMMENTS
a(2), a(3), ..., a(6) have been checked by the direct computation of the hyper-Wiener index (using Maple).
LINKS
M. Eliasi, A. Iranmanesh, The hyper-Wiener index of the generalized hierarchical product of graphs, Discrete Appl. Math., 159, 2011, 866-871.
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
a(n) = n*(15 + 14*n + 12*n^2 + 4*n^3)/3 (see Example 1 in the Eliasi et al. reference).
G.f. = x^2*(82-137*x+147*x^2-75*x^3+15*x^4)/(1-x)^5.
The Hosoya-Wiener polynomial of TUHC_6[2n,2] is n*(2*t^n*(1 + t)^2 + t^4 - t^3 - 3*t^2 - 5*t)/(t - 1).
MAPLE
a := proc (n) options operator, arrow: (1/3)*n*(15+14*n+12*n^2+4*n^3) end proc: seq(a(n), n = 2 .. 35);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Jul 25 2013
STATUS
approved