login
Number of lattice paths from {10}^n to {0}^n using steps that decrement one component by 1 such that for each point (p_1,p_2,...,p_n) we have abs(p_{i}-p_{i+1}) <= 1.
1

%I #3 Jul 19 2013 18:53:05

%S 1,1,1024,345104904,3738507768500896,515791104488454210243072,

%T 533787802709908480895773030991840,

%U 2939698583689917131062885788617101100432640,67615349092818211761363011993295568195043095341810560,5423343272088334681448905520570069990718596808928384073877898816

%N Number of lattice paths from {10}^n to {0}^n using steps that decrement one component by 1 such that for each point (p_1,p_2,...,p_n) we have abs(p_{i}-p_{i+1}) <= 1.

%e a(2) = 2^10 = 1024.

%Y Row n=10 of A227655.

%Y Cf. A000079.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Jul 19 2013