login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A227604 Number of lattice paths from {7}^n to {0}^n using steps that decrement one component such that for each point (p_1,p_2,...,p_n) we have p_1<=p_2<=...<=p_n. 2

%I

%S 1,64,65445,312077474,3848596333400,90650832149396184,

%T 3418868469576233694591,184570140930218389159747070,

%U 13220723286785303728967102618052,1190606938488172095512348078940830464,129559009610760457771091688202936893773393

%N Number of lattice paths from {7}^n to {0}^n using steps that decrement one component such that for each point (p_1,p_2,...,p_n) we have p_1<=p_2<=...<=p_n.

%H Vaclav Kotesovec, <a href="/A227604/b227604.txt">Table of n, a(n) for n = 0..38</a>

%F Conjecture: a(n) ~ 2^4 * 5^2 * 7^(7*n + 85/2) / (6^37 * Pi^3 * n^24). - _Vaclav Kotesovec_, Nov 23 2016

%p b:= proc(l) option remember; `if`(l[-1]=0, 1, add(add(b(subsop(

%p i=j, l)), j=`if`(i=1, 0, l[i-1])..l[i]-1), i=1..nops(l)))

%p end:

%p a:= n-> `if`(n=0, 1, b([7$n])):

%p seq(a(n), n=0..11);

%Y Row n=7 of A227578.

%K nonn

%O 0,2

%A _Alois P. Heinz_, Jul 17 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 19 13:56 EST 2022. Contains 350466 sequences. (Running on oeis4.)