Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Feb 22 2014 09:23:53
%S 1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,
%T 5,5,6,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,6,6,6,6,6,6,6,6,6,7,7,7,
%U 7,7,7,7,7,7,7,7,7,7,8,7,7,7,7,7,7,7
%N Array r(m,n) = least k such that H(m) + H(n) - H(m*n + k) < g, where H denotes harmonic number and g denotes the Euler-Mascheroni constant.
%C Since log(m*n) = log m + log n and log n is "close to" H(n) - g, this array indicates the "closeness" of H(m*n) to H(m) + H(n). Conjectures:
%C (1) r(n,n) = n for n >= 1;
%C (2) 2*H(n) - H(n^2 + n) < g < 2*H(n) - H(n^2 + n - 1);
%C (3) floor(1/(g - 2*H(n) + H(n^2 + n)) = 6*n*(n+1);
%C (4) floor(1/(2*H(n) + H(n^2 + n - 1) - g) = A227582(n).
%H Clark Kimberling, <a href="/A227581/b227581.txt">Table of n, a(n) for n = 1..1830</a>
%e Northwest corner:
%e 1 2 2 3 3 4 4 5 6 6
%e 2 2 3 3 4 4 5 5 6 6
%e 2 3 3 4 4 5 5 6 6 7
%e 3 3 4 4 5 5 6 6 7 7
%e 3 4 4 5 5 6 6 7 7 8
%e 4 4 5 5 6 6 7 7 8 8
%e 4 5 5 6 6 7 7 8 8 9
%e r(2,3) = 3 because h(2) + h(3) - h(9) = 0.504... < g = 0.577... < h(2) + h(3) - h(8) = 0.615... .
%t h[n_] := h[n] = HarmonicNumber[n]; z = 20; r[m_, n_] := Module[{Nn = N[n, 50], Nm = N[m, 50]}, NestWhile[# + 1 &, Floor[(m + n)/2], ! h[Nm] + h[Nn] - h[Nm*Nn + #] < EulerGamma &]]; Table[r[m, n], {m, z}, {n, z}] // TableForm (* array *)
%t Flatten[Table[r[n - k + 1, k], {n, z}, {k, n, 1, -1}]] (* sequence *)
%t (* _Peter J. C. Moses_, Jul 16 2013 *)
%Y Cf. A227582, A227586.
%K nonn,tabl,easy
%O 1,2
%A _Clark Kimberling_, Jul 17 2013