login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number A(n,k) of lattice paths from {n}^k to {0}^k using steps that decrement one component such that for each point (p_1,p_2,...,p_k) we have p_1<=p_2<=...<=p_k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
25

%I #48 Jul 24 2021 03:04:59

%S 1,1,1,1,1,1,1,1,2,1,1,1,5,4,1,1,1,14,29,8,1,1,1,42,290,185,16,1,1,1,

%T 132,3532,7680,1257,32,1,1,1,429,49100,456033,238636,8925,64,1,1,1,

%U 1430,750325,34426812,77767945,8285506,65445,128,1

%N Number A(n,k) of lattice paths from {n}^k to {0}^k using steps that decrement one component such that for each point (p_1,p_2,...,p_k) we have p_1<=p_2<=...<=p_k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

%C Conjecture: column k is asymptotic to c(k) * (k+1)^(k*n)/n^((k^2-1)/2), where c(k) is a constant dependent only on k. - _Vaclav Kotesovec_, Jul 21 2013

%H Alois P. Heinz, <a href="/A227578/b227578.txt">Antidiagonals n = 0..25, flattened</a>

%H Antonio Vera López, Luis Martínez, Antonio Vera Pérez, Beatriz Vera Pérez and Olga Basova, <a href="https://doi.org/10.1016/j.laa.2017.05.027">Combinatorics related to Higman's conjecture I: Parallelogramic digraphs and dispositions</a>, Linear Algebra and its Applications, Volume 530, 1 October 2017, p. 414-444. This entry is mentioned in the Introduction, but it seems that actually they mean A181196.

%e A(4,0) = 1: [()].

%e A(3,1) = 4: [(3),(0)], [(3),(1),(0)], [(3),(2),(0)], [(3),(2),(1),(0)].

%e A(2,2) = 5: [(2,2),(0,2),(0,0)], [(2,2),(0,2),(0,1),(0,0)], [(2,2),(1,2),(0,2),(0,0)], [(2,2),(1,2),(0,2),(0,1),(0,0)], [(2,2),(1,2),(1,1),(0,1),(0,0)].

%e A(1,3) = 1: [(1,1,1),(0,1,1),(0,0,1),(0,0,0)].

%e A(0,4) = 1: [(0,0,0,0)].

%e Square array A(n,k) begins:

%e 1, 1, 1, 1, 1, 1, ...

%e 1, 1, 1, 1, 1, 1, ...

%e 1, 2, 5, 14, 42, 132, ...

%e 1, 4, 29, 290, 3532, 49100, ...

%e 1, 8, 185, 7680, 456033, 34426812, ...

%e 1, 16, 1257, 238636, 77767945, 36470203156, ...

%p b:= proc(l) option remember; `if`(l[-1]=0, 1, add(add(b(subsop(

%p i=j, l)), j=`if`(i=1, 0, l[i-1])..l[i]-1), i=1..nops(l)))

%p end:

%p A:= (n, k)-> `if`(k=0, 1, b([n$k])):

%p seq(seq(A(n, d-n), n=0..d), d=0..10);

%t b[l_] := b[l] = If[ l[[-1]] == 0, 1, Sum[ Sum[ b[ReplacePart[l, i -> j]], {j, If[i == 1, 0, l[[i-1]]], l[[i]]-1}], {i, 1, Length[l]}]]; a[n_, k_] := If[k == 0, 1, b[Array[n&, k]]]; Table[Table[a[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* _Jean-François Alcover_, Dec 09 2013, translated from Maple *)

%Y Columns k=0-10 give: A000012, A011782, A059231, A227580, A227583, A227596, A227597, A227598, A227599, A227600, A227601.

%Y Rows n=0+1, 2-10 give: A000012, A000108(k+1), A181197(k+2), A227584, A227602, A227603, A227604, A227605, A227606, A227607.

%Y Main diagonal gives: A227579.

%Y Cf. A060854 (steps decrement one component by 1), A262809, A263159.

%Y A181196 is a similar but different array.

%K nonn,tabl

%O 0,9

%A _Alois P. Heinz_, Jul 16 2013