login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Values of n such that L(18) and N(18) are both prime, where L(k) = (n^2+n+1)*2^(2*k) + (2*n+1)*2^k + 1, N(k) = (n^2+n+1)*2^k + n.
1

%I #17 Mar 20 2019 12:27:42

%S -101,625,-665,-1151,-1211,1411,2209,-2945,3469,-4391,4681,-4895,

%T -5945,-6281,-6305,6529,8125,-8249,8269,-8321,8605,9025,-9821,-10439,

%U 11659,13729,-14429,14821,14875,15031,-15545,-15575,15601,-15815,17215,-17435,-17615,17899,-18965,19555,-19775

%N Values of n such that L(18) and N(18) are both prime, where L(k) = (n^2+n+1)*2^(2*k) + (2*n+1)*2^k + 1, N(k) = (n^2+n+1)*2^k + n.

%C Computed with PARI using commands similar to those used to compute A226921.

%H Vincenzo Librandi and Joerg Arndt, <a href="/A227521/b227521.txt">Table of n, a(n) for n = 1..338</a>

%H Eric L. F. Roettger, <a href="http://people.ucalgary.ca/~hwilliam/files/A_Cubic_Extention_of_the_Lucas_Functions.pdf">A cubic extension of the Lucas functions</a>, Thesis, Dept. of Mathematics and Statistics, Univ. of Calgary, 2009. See page 195.

%Y Cf. A226921-A226929, A227448, A227449, A227515-A227523.

%K sign,easy

%O 1,1

%A _Vincenzo Librandi_, Jul 14 2013