%I #12 Mar 20 2019 12:27:10
%S 199,-281,-359,439,-1109,-1331,-1571,-1745,-1859,-2225,-2381,2449,
%T -2465,3505,3709,4015,4141,-4355,-5351,5605,-5939,-6509,6511,-7241,
%U -7709,7969,-8411,8611,9019,10021,10279,-10571,-10859,-12251,-13061,13081,14869,-15641,15811,16351,16621,16885,17221,-17849,-18299,-18425,18595,19009,-19601,19879
%N Values of n such that L(14) and N(14) are both prime, where L(k) = (n^2+n+1)*2^(2*k) + (2*n+1)*2^k + 1, N(k) = (n^2+n+1)*2^k + n.
%C Computed with PARI using commands similar to those used to compute A226921.
%H Vincenzo Librandi and Joerg Arndt, <a href="/A227517/b227517.txt">Table of n, a(n) for n = 1..1000</a>
%H Eric L. F. Roettger, <a href="http://people.ucalgary.ca/~hwilliam/files/A_Cubic_Extention_of_the_Lucas_Functions.pdf">A cubic extension of the Lucas functions</a>, Thesis, Dept. of Mathematics and Statistics, Univ. of Calgary, 2009. See page 195.
%Y Cf. A226921-A226929, A227448, A227449, A227515-A227523.
%K sign,easy
%O 1,1
%A _Vincenzo Librandi_, Jul 14 2013