%I #21 Mar 20 2019 13:09:39
%S -119,205,271,1267,-1319,-2873,2935,-3029,3133,-3257,3547,3745,-4193,
%T 4291,4555,-4907,-5789,-5927,6223,-6347,-7217,8167,-8447,8587,8845,
%U 9961,10411,10897,10903,-11429,-12467,12637,-12983,-13013,-13907,15643,-16445,16615,17971,18097,18361,-19859
%N Values of n such that L(12) and N(12) are both prime, where L(k) = (n^2+n+1)*2^(2*k) + (2*n+1)*2^k + 1, N(k) = (n^2+n+1)*2^k + n.
%C Computed with PARI using commands similar to those used to compute A226921.
%H Vincenzo Librandi and Joerg Arndt, <a href="/A227515/b227515.txt">Table of n, a(n) for n = 1..1000</a>
%H Eric L. F. Roettger, <a href="http://people.ucalgary.ca/~hwilliam/files/A_Cubic_Extention_of_the_Lucas_Functions.pdf">A cubic extension of the Lucas functions</a>, Thesis, Dept. of Mathematics and Statistics, Univ. of Calgary, 2009. See page 195.
%Y Cf. A226921-A226929, A227448, A227449, A227516-A227523.
%K sign,easy
%O 1,1
%A _Vincenzo Librandi_, Jul 14 2013