login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227512
Floor(-1/n + 1/log((2n+1)/(2n-1))).
2
10, 92, 318, 760, 1490, 2581, 4103, 6129, 8731, 11981, 15952, 20714, 26340, 32902, 40472, 49123, 58925, 69951, 82273, 95963, 111094, 127736, 145962, 165844, 187454, 210865, 236147, 263373, 292615, 323945, 357436, 393158, 431184, 471586, 514436, 559807
OFFSET
1,1
COMMENTS
log(u/v), where u = n + 1/2 and v = n - 1/2, is the area under the curve y = 1/x that matches the rectangle of width 1 and height 1/n with base centered at (1/n,0); a(n) -> oo since -1/n + log(u/v) -> 0.
LINKS
FORMULA
a(n) = 12*n^3 - floor(9*n/5) - 1. (conjectured, based on computations by Peter J. C. Moses, Jul 14 2013)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-5) - 3*a(n-6) + 3*a(n-7) - a(n-8) (conjectured; verified up to n = 100000 ).
G.f.: (10 + 62 x + 72 x^2 + 72 x^3 + 72 x^4 + 63 x^5 + 8 x^6 + x^7)/((-1 + x)^4 (1 + x + x^2 + x^3 + x^4)) (conjectured).
EXAMPLE
-1/4 + log(9/7) = 0.0013144..., so 1/u = 760.78..., so a(4) = 760.
MATHEMATICA
z = 120; a[n_] := Floor[1/(Log[(2 n + 1)/(2 n - 1)] - 1/n)]; t = Table[a[n], {n, 1, z}]
CROSSREFS
Cf. A227513.
Sequence in context: A015467 A144783 A365217 * A227513 A052266 A027325
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 14 2013
STATUS
approved