login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Schroeder triangle sums: a(n) = A006603(n+3) - A006318(n+3) - A006319(n+2).
5

%I #11 Jul 19 2013 13:10:42

%S 1,6,31,154,763,3808,19197,97772,502749,2607658,13630635,71743478,

%T 379949431,2023314980,10828048409,58206726936,314157742457,

%U 1701817879214,9249717805207,50427858276754,275695956722547,1511164724634440,8302888160922965

%N Schroeder triangle sums: a(n) = A006603(n+3) - A006318(n+3) - A006319(n+2).

%C The terms of this sequence equal the Kn23 sums, see A180662, of the Schroeder triangle A033877 (with offset 1 and n for columns and k for rows).

%F a(n) = sum(A033877(n-2*k+2,n-k+3), k=1..floor((n+1)/2)).

%F a(n) = A006603(n+3) - A006318(n+3) - A006319(n+2).

%p A227505 := proc(n) local k, T; T := proc(n, k) option remember; if n=1 then return(1) fi; if k<n then return(0) fi; T(n, k-1)+T(n-1, k-1)+T(n-1, k) end; add(T(n-2*k+2,n-k+3), k=1..iquo(n+1, 2)) end: seq(A227505(n), n = 1..23);

%p A227505 := proc(n): A006603(n+3) - A006318(n+3) - A006319(n+2) end: A006603 := n -> add((k*add(binomial(n-k+2, i)*binomial(2*n-3*k-i+3, n-k+1), i= 0.. n-2*k+2))/(n-k+2), k= 1.. n/2+1): A006318 := n -> add(binomial(n+k, n-k) * binomial(2*k, k)/(k+1), k=0..n): A006319 := proc(n): if n=0 then 1 else A006318(n) - A006318(n-1) fi: end: seq(A227505(n), n=1..23);

%Y Cf. A033877, A006603, A006318, A006319, A227504.

%K nonn,easy

%O 1,2

%A _Johannes W. Meijer_, Jul 15 2013