login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227446
Numbers k such that 7*2^(2*k) - 5*2^k + 1 is prime.
0
0, 1, 3, 13, 39, 539, 2631, 4283, 13595
OFFSET
1,3
COMMENTS
a(9) > 10000. - Jinyuan Wang, Feb 12 2019
a(10) > 10^5. - Michael S. Branicky, Nov 26 2024
LINKS
Eric L. F. Roettger, A Cubic Extension of the Lucas Functions, Ph. D. Dissertation, Dept. Math. and Statistics, Univ. Calgary, 2009 (see page 196).
MAPLE
select(isprime, [seq(7*2^(2*n)-5*2^n+1, n=0..1000)]); # Jinyuan Wang, Feb 12 2019
MATHEMATICA
Select[Range[0, 3000], PrimeQ[7 2^(2 #) - 5 2^# + 1]&]
PROG
(PARI) for(n=0, 10^6, if(ispseudoprime(7*2^(2*n)-5*2^n+1), print1(n, ", "))); \\ Joerg Arndt, Jul 14 2013
CROSSREFS
Cf. A058593.
Sequence in context: A167910 A147042 A018492 * A059020 A290720 A289654
KEYWORD
nonn,more
AUTHOR
Vincenzo Librandi, Jul 14 2013
EXTENSIONS
a(8) from Jinyuan Wang, Feb 12 2019
a(9) from Michael S. Branicky, Apr 23 2023
STATUS
approved