login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k) = Number of n X k 0,1 arrays indicating 2 X 2 subblocks of some larger (n+1) X (k+1) binary array having two adjacent 1's and two adjacent 0's.
5

%I #6 Apr 05 2020 21:15:17

%S 2,4,4,8,16,8,16,62,62,16,32,240,457,240,32,64,932,3346,3346,932,64,

%T 128,3620,24568,46126,24568,3620,128,256,14056,180575,636996,636996,

%U 180575,14056,256,512,54576,1327102,8802600,16517429,8802600,1327102,54576,512

%N T(n,k) = Number of n X k 0,1 arrays indicating 2 X 2 subblocks of some larger (n+1) X (k+1) binary array having two adjacent 1's and two adjacent 0's.

%C Table starts

%C ...2......4........8..........16...........32............64...........128

%C ...4.....16.......62.........240..........932..........3620.........14056

%C ...8.....62......457........3346........24568........180575.......1327102

%C ..16....240.....3346.......46126.......636996.......8802600.....121623396

%C ..32....932....24568......636996.....16517429.....428106288...11089818502

%C ..64...3620...180575.....8802600....428106288...20779660903.1007348570226

%C .128..14056..1327102...121623396..11089818502.1007348570226

%C .256..54576..9752326..1680297950.287216470434

%C .512.211912.71665377.23214121178

%H R. H. Hardin, <a href="/A227442/b227442.txt">Table of n, a(n) for n = 1..84</a>

%F Empirical for column k:

%F k=1: a(n) = 2*a(n-1).

%F k=2: a(n) = 4*a(n-1) -2*a(n-2) +6*a(n-3).

%F k=3: [order 9].

%e Some solutions for n=4, k=4

%e ..1..0..1..1....0..0..0..0....1..0..1..1....1..0..0..0....0..1..1..0

%e ..1..0..1..0....1..1..0..1....0..1..0..0....0..0..0..0....0..0..0..1

%e ..1..0..0..1....1..1..1..0....1..0..0..1....0..0..0..0....0..0..1..1

%e ..1..1..1..1....1..1..1..0....1..0..0..0....0..1..0..0....0..1..0..0

%Y Column 1 is A000079.

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_ Jul 11 2013