login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of nX4 0,1 arrays indicating 2X2 subblocks of some larger (n+1)X5 binary array having a sum of one, with rows and columns of the latter in lexicographically nondecreasing order
1

%I #4 Jul 09 2013 13:21:59

%S 5,30,185,1104,6160,31073,141192,581706,2192737,7631150,24723499,

%T 75114814,215382006,586096131,1520882101,3779307010,9026380556,

%U 20787492011,46293089506,99943655427,209652253128,428180495383

%N Number of nX4 0,1 arrays indicating 2X2 subblocks of some larger (n+1)X5 binary array having a sum of one, with rows and columns of the latter in lexicographically nondecreasing order

%C Column 4 of A227385

%H R. H. Hardin, <a href="/A227383/b227383.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = (1/2534272925184000)*n^19 + (23/800296713216000)*n^18 + (31/29640619008000)*n^17 + (1061/31384184832000)*n^16 + (1/1793792000)*n^15 + (901/89159616000)*n^14 + (573137/7846046208000)*n^13 + (19320181/3621252096000)*n^12 - (25008281/201180672000)*n^11 + (332913253/109734912000)*n^10 - (5757514877/134120448000)*n^9 + (1008987604001/2414168064000)*n^8 - (7198243864451/3923023104000)*n^7 - (144244343741471/11769069312000)*n^6 + (12251347161947/40864824000)*n^5 - (164980284780767/59439744000)*n^4 + (28073158072/1786785)*n^3 - (35127268025713/617512896)*n^2 + (14284038375031/116396280)*n - 121172 for n>7

%e Some solutions for n=4

%e ..0..1..0..0....1..0..0..0....0..1..0..0....0..0..1..0....0..1..0..0

%e ..1..0..1..1....0..1..0..0....0..0..1..1....1..0..0..0....1..0..0..0

%e ..0..0..1..1....0..0..1..0....0..0..0..1....0..0..0..0....0..1..0..1

%e ..0..0..1..0....0..0..0..1....0..0..1..1....0..1..1..1....0..1..1..1

%K nonn

%O 1,1

%A _R. H. Hardin_ Jul 09 2013