login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227263
T(n,k)=Number of nXk 0,1 arrays indicating 2X2 subblocks of some larger (n+1)X(k+1) binary array having a sum of two or less, with rows and columns of the latter in lexicographically nondecreasing order
6
2, 3, 3, 4, 9, 4, 5, 23, 23, 5, 6, 50, 98, 50, 6, 7, 96, 353, 353, 96, 7, 8, 168, 1111, 2201, 1111, 168, 8, 9, 274, 3136, 11932, 11932, 3136, 274, 9, 10, 423, 8065, 57146, 112349, 57146, 8065, 423, 10, 11, 625, 19146, 244818, 937865, 937865, 244818, 19146, 625, 11
OFFSET
1,1
COMMENTS
Table starts
..2...3.....4.......5.........6...........7...........8...........9
..3...9....23......50........96.........168.........274.........423
..4..23....98.....353......1111........3136........8065.......19146
..5..50...353....2201.....11932.......57146......244818......951917
..6..96..1111...11932....112349......937865.....6961606....46364258
..7.168..3136...57146....937865....13855163...182525275..2147322451
..8.274..8065..244818...6961606...182525275..4307345460.90839025368
..9.423.19146..951917..46364258..2147322451.90839025368
.10.625.42385.3403038.280471755.22777463128
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = n + 1
k=2: a(n) = (1/24)*n^4 + (5/12)*n^3 + (11/24)*n^2 + (13/12)*n + 1
k=3: [polynomial of degree 9] for n>5
k=4: [polynomial of degree 19] for n>9
k=5: [polynomial of degree 39] for n>20
EXAMPLE
Some solutions for n=4 k=4
..1..1..0..0....1..1..1..1....1..1..1..1....1..1..1..0....1..1..1..1
..1..0..0..0....1..0..0..1....1..0..0..1....1..0..0..1....1..1..0..1
..1..1..1..0....1..0..0..1....1..1..0..1....0..0..1..1....1..0..1..1
..1..1..1..0....1..1..0..0....1..1..0..0....0..0..1..1....0..0..1..1
CROSSREFS
Sequence in context: A130743 A263775 A206455 * A111574 A330510 A173590
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Jul 04 2013
STATUS
approved