login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of Hamiltonian circuits in a 2n X 2n square lattice of nodes, reduced for symmetry, where the orbits under the symmetry group of the square, D4, have 4 elements.
6

%I #40 Jun 30 2023 10:26:53

%S 0,1,24,1760,411861,551247139,2883245852086,85948329517780776,

%T 11001968794030973784902,7462399462450938863305238264

%N Number of Hamiltonian circuits in a 2n X 2n square lattice of nodes, reduced for symmetry, where the orbits under the symmetry group of the square, D4, have 4 elements.

%H Giovanni Resta, <a href="/A227257/a227257.c.txt">Simple C program for computing a(1)-a(4)</a>

%H Ed Wynn, <a href="http://arxiv.org/abs/1402.0545">Enumeration of nonisomorphic Hamiltonian cycles on square grid graphs</a>, arXiv:1402.0545 [math.CO], 2014.

%F A063524 + A227005 + A227257 + A227301 = A209077.

%F 1*A063524 + 2*A227005 + 4*A227257 + 8*A227301 = A003763.

%F a(n) = A237429(n) + A237430(n). - _Ed Wynn_, Feb 07 2014

%e When n = 2, there is only 1 Hamiltonian circuit in a 4 X 4 square lattice, where the orbits under the symmetry group of the square have 4 elements. The 4 elements are:

%e o__o__o__o o__o__o__o o__o__o__o o__o o__o

%e | | | | | | | | | |

%e o o__o__o o o__o o o__o__o o o o o o

%e | | | | | | | | | | | |

%e o o__o__o o o o o o__o__o o o o__o o

%e | | | | | | | | | |

%e o__o__o__o o__o o__o o__o__o__o o__o__o__o

%Y Cf. A003763, A209077, A063524, A227005, A227301.

%K nonn,more

%O 1,3

%A _Christopher Hunt Gribble_, Jul 05 2013

%E a(4) from _Giovanni Resta_, Jul 11 2013

%E a(5)-a(10) from _Ed Wynn_, Feb 05 2014