login
A227256
T(n,k)=Number of nXk binary arrays indicating whether each 2X2 subblock of a larger binary array has lexicographically nondecreasing rows and columns, for some larger (n+1)X(k+1) binary array with rows and columns of the latter in lexicographically nondecreasing order
6
1, 2, 2, 4, 3, 4, 7, 9, 9, 7, 11, 23, 36, 23, 11, 16, 53, 134, 134, 53, 16, 22, 113, 450, 813, 450, 113, 22, 29, 225, 1353, 4578, 4578, 1353, 225, 29, 37, 421, 3722, 22659, 44379, 22659, 3722, 421, 37, 46, 745, 9529, 98821, 385212, 385212, 98821, 9529, 745, 46, 56
OFFSET
1,2
COMMENTS
Table starts
..1...2.....4.......7........11..........16...........22.............29
..2...3.....9......23........53.........113..........225............421
..4...9....36.....134.......450........1353.........3722...........9529
..7..23...134.....813......4578.......22659........98821.........388681
.11..53...450....4578.....44379......385212......2925969.......19641271
.16.113..1353...22659....385212.....6022992.....82991987.....1003726635
.22.225..3722...98821...2925969....82991987...2110707595....47221491430
.29.421..9529..388681..19641271..1003726635..47221491430..1972236759492
.37.745.22957.1403516.118614860.10790290999.934320610037.72868867008677
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = (1/2)*n^2 - (1/2)*n + 1
k=2: [polynomial of degree 5] for n>1
k=3: [polynomial of degree 11] for n>3
k=4: [polynomial of degree 23] for n>8
k=5: [polynomial of degree 47] for n>30
EXAMPLE
Some solutions for n=4 k=4
..1..1..0..0....1..1..1..1....1..1..0..1....1..1..1..1....1..1..1..1
..1..0..1..1....1..1..0..0....1..0..1..1....1..1..0..0....1..1..0..0
..1..0..1..0....1..0..0..1....1..0..0..0....1..0..1..1....1..0..0..0
..0..1..1..1....0..1..1..0....0..0..1..1....0..1..0..0....1..0..0..1
CROSSREFS
Column 1 is A000124(n-1)
Sequence in context: A353925 A157927 A374396 * A328774 A131816 A223541
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Jul 04 2013
STATUS
approved