Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Sep 24 2013 12:19:37
%S 3,4,5,5,7,6,9,6,7,8,13,7,15,10,9,8,19,8,21,9,11,14,25,9,11,16,9,11,
%T 31,10,33,10,15,20,13,10,39,22,17,11,43,12,45,15,11,26,49,11,15,12,21,
%U 17,55,12,17,13,23,32,61,12,63,34,13,12,19,16,69,21,27,14,73,13,75,40,13
%N Smallest sum of the three perpendicular integer sides of a rectangular parallelepiped of volume n.
%H Charles R Greathouse IV, <a href="/A227215/b227215.txt">Table of n, a(n) for n = 1..10000</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Parallelepiped">Parallelepiped</a>
%e a(24)=9 since 9=2+3+4 is the smallest sum of all possible parallelepipeds having 24=2*3*4 as volume.
%t a[n_] := Block[{x,y,z}, Min[Total /@ ({x, y, z} /. List@ ToRules@ Reduce[ x*y*z == n && x >= y >= z > 0, {x, y, z}, Integers])]; Array[a, 75] (* _Giovanni Resta_, Sep 19 2013 *)
%o (PARI) a(n) = {smin = 3*n; for (i = 1, n, for (j = 1, i, for (k = 1, j, if (i*j*k == n, smin = min (smin, i+j+k));););); return (smin);} \\ _Michel Marcus_, Sep 23 2013
%o (PARI) a(n)=my(m=n+2,d); fordiv(n,x,d=divisors(n/x); m=min(m, d[(#d+1)\2]+d[#d\2+1]+x)); m \\ _Charles R Greathouse IV_, Sep 23 2013
%Y Cf. A063655, A033676.
%K nonn
%O 1,1
%A _Carmine Suriano_, Sep 19 2013