login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227138
Positive solutions of the Pell equation x^2 - 89*y^2 = -1. Solutions y = 53*a(n).
3
1, 1000001, 1000003000001, 1000005000006000001, 1000007000015000010000001, 1000009000028000035000015000001, 1000011000045000084000070000021000001, 1000013000066000165000210000126000028000001, 1000015000091000286000495000462000210000036000001
OFFSET
0,2
COMMENTS
The Pell equation x^2 - 89*y^2 = -1 has only proper solutions, namely x(n) = 500*A227137(n) and y(n) = 53*a(n), n >= 0.
REFERENCES
T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964, ch. VI, 57., pp. 201-204.
O. Perron, Die Lehre von den Kettenbruechen, Band I, Teubner, Stuttgart, 1954, Paragraph 27, pp. 92-95.
FORMULA
a(n) = S(n, 2*500001) - S(n-1, 2*500001), n >= 0, with the Chebyshev S-polynomials (see A049310) with S(n, -1) = 0. Here 500001 = 3*166667 is the fundamental x solution of the Pell equation x^2 - 89*y^2 = +1.
a(n) = 2*500001*a(n-1) - a(n-2), n >= 1, with inputs a(-1) = 1 and a(0) = 1.
O.g.f.: (1 - x)/(1 - 2*500001*x + x^2).
EXAMPLE
n=0: (500*1)^2 - 89*(53*1)^2 = -1. Proper fundamental (positive) solution.
n=1: (500*1000003)^2 - 89*(53*1000001)^2 = -1, where 500*1000003 = 500001500 = 2^2*5^3*1000003 and 53*1000001 = 53000053 = 53*101*9901.
MATHEMATICA
LinearRecurrence[{1000002, -1}, {1, 1000001}, 9] (* Hugo Pfoertner, Feb 11 2024 *)
CROSSREFS
Cf. A227137 (x/500 solutions), A049310, A227110, A227111.
Sequence in context: A017274 A017514 A017646 * A227111 A227137 A096212
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jul 02 2013
STATUS
approved