login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Partitions with parts repeated at most twice and repetition only allowed if first part has an even index (first index = 1).
3

%I #43 Mar 06 2020 09:25:03

%S 1,1,1,2,2,4,4,6,8,10,12,17,20,25,31,39,47,58,69,85,102,123,145,175,

%T 207,246,290,343,401,473,551,646,751,875,1012,1177,1358,1570,1807,

%U 2083,2389,2746,3140,3597,4106,4690,5337,6082,6907,7848,8895,10085,11404,12902,14561,16438,18520,20864,23460,26385,29619

%N Partitions with parts repeated at most twice and repetition only allowed if first part has an even index (first index = 1).

%H Alois P. Heinz, <a href="/A227135/b227135.txt">Table of n, a(n) for n = 0..10000</a>

%F Conjecture: A227134(n) + A227135(n) = A182372(n) for n>=0, see comment in A182372.

%F G.f.: 1/(1-x) + Sum_{n>=2} x^(A002620(n+2)-1) / Product_{k=1..n} (1-x^k), where A002620(n) = floor(n/2)*ceiling(n/2) forms the quarter-squares. - _Paul D. Hanna_, Jul 06 2013

%F a(n) ~ c * exp(Pi*sqrt(2*n/5)) / n^(3/4), where c = 2^(3/4) / (sqrt(5)*(1 + sqrt(5))^(3/2)) = 0.1291995618069... - _Vaclav Kotesovec_, May 28 2018, updated Mar 06 2020

%e G.f.: 1 + x + x^2 + 2*x^3 + 2*x^4 + 4*x^5 + 4*x^6 + 6*x^7 + 8*x^8 +...

%e G.f.: 1/(1-x) + x^3/((1-x)*(1-x^2)) + x^5/((1-x)*(1-x^2)*(1-x^3)) + x^8/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) + x^11/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)) + x^15/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6))) +...

%e There are a(13)=25 such partitions, displayed here as partitions into two sorts of parts (format P:S for sort:part) where the first sort is 1 and sorts oscillate:

%e 01: [ 1:1 2:0 2:1 3:0 5:1 ]

%e 02: [ 1:1 2:0 2:1 4:0 4:1 ]

%e 03: [ 1:1 2:0 2:1 8:0 ]

%e 04: [ 1:1 2:0 3:1 7:0 ]

%e 05: [ 1:1 2:0 4:1 6:0 ]

%e 06: [ 1:1 2:0 10:1 ]

%e 07: [ 1:1 3:0 3:1 6:0 ]

%e 08: [ 1:1 3:0 4:1 5:0 ]

%e 09: [ 1:1 3:0 9:1 ]

%e 10: [ 1:1 4:0 8:1 ]

%e 11: [ 1:1 5:0 7:1 ]

%e 12: [ 1:1 6:0 6:1 ]

%e 13: [ 1:1 12:0 ]

%e 14: [ 2:1 3:0 3:1 5:0 ]

%e 15: [ 2:1 3:0 8:1 ]

%e 16: [ 2:1 4:0 7:1 ]

%e 17: [ 2:1 5:0 6:1 ]

%e 18: [ 2:1 11:0 ]

%e 19: [ 3:1 4:0 6:1 ]

%e 20: [ 3:1 5:0 5:1 ]

%e 21: [ 3:1 10:0 ]

%e 22: [ 4:1 9:0 ]

%e 23: [ 5:1 8:0 ]

%e 24: [ 6:1 7:0 ]

%e 25: [13:1 ]

%p ## See A227134

%p # second Maple program:

%p b:= proc(n, i, t) option remember; `if`(n=0, 1-t,

%p `if`(i*(i+1)<n, 0, add(b(n-i*j, i-1,

%p irem(t+j, 2)), j=0..min(t+1, n/i))))

%p end:

%p a:= n-> add(b(n$2, t), t=0..1):

%p seq(a(n), n=0..60); # _Alois P. Heinz_, Feb 15 2017

%t b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1 - t, If[i*(i + 1) < n, 0, Sum[ b[n - i*j, i - 1, Mod[t + j, 2]], {j, 0, Min[t + 1, n/i]}]]];

%t a[n_] := Sum[b[n, n, t], {t, 0, 1}];

%t Table[a[n], {n, 0, 60}] (* _Jean-François Alcover_, May 21 2018, after _Alois P. Heinz_ *)

%o (PARI) {A002620(n)=floor(n/2)*ceil(n/2)}

%o {a(n)=polcoeff(1/(1-x+x*O(x^n)) + sum(m=2,sqrtint(4*n), x^(A002620(m+2)-1)/prod(k=1,m,1-x^k+x*O(x^n))),n)}

%o for(n=0,60,print1(a(n),", ")) \\ _Paul D. Hanna_, Jul 06 2013

%Y Cf. A227134 (parts may repeat after odd index).

%K nonn

%O 0,4

%A _Joerg Arndt_, Jul 02 2013